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Preface

These are the lecture notes for a graduate course in ergodic theory taught by the
author at the University of Helsinki in the spring semester of 2015. None of the material
presented is the original work of the author. Rather, the notes attempt to give a concise
introduction to the subject, assuming no prior exposure to it, by collecting topics of
the author’s choice from various sources. Consequently, the outcome is a cross section of
ergodic theory intended to help the reader quickly embark on more comprehensive studies
in the field with the aid of research literature and the mentioned references.

There are many books containing excellent accounts of ergodic theory of varying ex-
tent. We particularly mention the classics by Walters [17], Petersen [10], Sinai [16] and
Parry [9]. Brin and Stuck [2] includes a concise and clear introduction to ergodic theory,
in addition to different topics in the theory of dynamical systems. Pollicott and Yuri [12]
is more geared for the undergraduate student, but contains interesting material and many
applications not discussed in these notes. In addition to the published books, the lecture
notes by Sarig [15], Hochman [7] and Bakhtin [1] are highly recommended. This set of
notes has been influenced by all the preceding references, with special emphasis on Parry’s
book.

It is assumed that the reader is familiar with the basics of measure and integration
theory, as well as elementary topology, and is comfortable with the notions of Banach and
Hilbert spaces (in particular Lp spaces) and bounded linear operators on them. We will
take advantage of several results in real and functional analysis, which, however, are all
recalled in the appendices; general references in this regard include Rudin [13,14], and
Dunford and Schwartz [3], while Phelps [11] treats the Choquet theory of compact convex
sets. It will help the reader to have some knowledge of probability theory, especially the
concept of conditional expectation given a sigma-algebra, but it is not required. The few
facts we need from probability theory are explained in the text, using Durrett [4] and
Williams [18] as references.
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CHAPTER 1

Introduction

Deterministic time evolution of a “system” is abstractly modeled by a family of maps

Tt : X → X , t ∈ R+ or N ,

depending on whether time is continuous or discrete. Here the set X is called the state
space and its elements are called states of the system. If x ∈ X is the state of the system
at time 0, then its state at any time t ≥ 0 is Tt(x) ∈ X. In particular, T0 = idX . By
determinism, it is evident that

Tt ◦ Ts = Tt+s

for all s, t ≥ 0. The identity above simply means that evolving the initial state first by s
time units and then by another t time units results in the same final state as evolving the
initial state directly by t+ s time units. In particular,

Tn = T1 ◦ · · · ◦ T1︸ ︷︷ ︸
n-fold composition

= T n1 , n ∈ N .

In discrete time, deterministic time evolution is consequently specified by the compositions
T n = T ◦ · · · ◦ T — or iterates — of a single map

T : X → X .

Example 1.1. Suppose X ⊂ Rd and F : X → Rd are such that the initial value problem

y′ = F (y) , y(0) = x (1.1)

has a unique solution y : R+ → X for all x ∈ X. In other words, given x ∈ X, there
exists a unique function satisfying y′(t) = F (y(t)), for all t ∈ R+, together with the initial
condition y(0) = x. Let us write Tt(x) = y(t) to emphasize the initial condition. The
function ỹ(t) = y(t+ s) = Tt+s(x) (s ≥ 0 fixed) satisfies

ỹ′(t) = y′(t+ s) = F (y(t+ s)) = F (ỹ(t)) , ỹ(0) = y(s) .

By uniqueness, we must have ỹ(t) = Tt(y(s)), or Tt+s(x) = Tt(Ts(x)).

Broadly speaking, ergodic theory can be viewed as the study of the statistical behav-
ior of the trajectories (T t(x))t≥0 of a deterministic system. The topic has its origin in
physics, more precisely in statistical mechanics and thermodynamics. Namely, suppose
equation (1.1) describes the motion of a large number of gas molecules in a container. A
physical quantity, say the temperature of the gas, is represented by a function

f : X → R ,

because it is determined by the state of the system. Then f(T t(x)) is the temperature
of the gas at time t, assuming the initial state of the system was x ∈ X. Physicists were
routinely assuming that the average value 1

n

∑n−1
i=0 f(T i(x)) of repeated measurements of
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8 1. INTRODUCTION

the temperature would in the long run simply be computable from the average value of f
over all possible states:

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
X

f(x) dx .

There was subsequently a need to justify such assumptions mathematically.

Although ergodic theory is still relevant to physics, it has found applications in many
other fields of science and areas of mathematics. These include ecology, biology, informa-
tion theory, probability theory and number theory, to name some. For this reason it was
left intentionally vague what the word “system” above means; it depends on the situation.
Likewise, “deterministic time evolution” does not exclude random behavior. To get a feel
of the various applications ergodic theory might have, here are two examples of results
that can be proved with ergodic-theoretic means:

Example 1.2 (Law of large numbers). Suppose Y1, Y2, . . . is a sequence of real-valued,
independent and identically distributed random variables such that the expected value
E(|Y1|) <∞. Then, almost surely,

lim
n→∞

1

n

n−1∑
i=0

Yi = E(Y1) .

For instance, if one tosses a fair coin infinitely many times, then the fraction of head
obtained tends to 50%.

Example 1.3 (Szemerédi). If N ⊂ N is an arbitrary set of natural numbers having
positive upper density, then N contains an arithmetic progression

m,m+ k,m+ 2k, . . . ,m+ (n− 1)k

of an arbitrary length n.

Here m, k ∈ N generally depend on n. N is said to have positive upper density if there
exist sequences an, bn ∈ N, n ≥ 1, and δ > 0 such that limn→∞ bn − an =∞ and

|N ∩ [an, bn]|
|[an, bn]|

> δ

for all n ≥ 1. ([an, bn] = {an, an + 1 . . . , bn} and |A| denotes the number of elements in a
set A ∈ N.)

In these notes we concentrate on discrete time, in two settings:

(1) X is a compact metric space and T is continuous.
(2) (X,B) is a measurable space and T is measurable.

Of course, a topological space X can always be endowed with the Borel sigma-algebra,
which renders every continuous map measurable. While the second setting is more general,
it will be beneficial to start from the first one.



CHAPTER 2

Continuous and measurable transformations

We begin our journey into ergodic theory by considering continuous transformations
T : X → X of a compact metric space X. This means that the preimage T−1U ⊂ X is
open for all open sets U ⊂ X. Soon after, we will consider measurable transformations
T : X → X of a measurable space (X,B). This means that X is a set, B is a sigma-
algebra on X, and the preimage T−1A ⊂ X is measurable for all measurable sets A ⊂ X
(that is, T−1A ∈ B for all A ∈ B). When X is a compact metric space, we endow it
with the Borel sigma-algebra (the smallest sigma-algebra containing all open sets), after
which any continuous transformation is measurable. In other words, the latter setting is
more general than the former.

In these notes the words “map” and “transformation” are used interchangeably. Like-
wise, “a transformation of a space” and “a transformation on a space” mean the same
thing.

1. Ergodic theorem for continuous transformations

In this section X is a compact metric space and T : X → X is a continuous transfor-
mation. It is informative to begin by introducing certain results for this special — albeit
interesting — case, because measure theory will not play a role in the discussion. We will
nevertheless encounter ideas that will be useful in the study of general measurable trans-
formations of measurable spaces. The Banach space of continuous functions f : X → C
equipped with the uniform norm ‖f‖∞ = supx∈X |f(x)| is denoted by C(X). Some stan-
dard results from functional analysis will be used, which are recalled in Appendix B.

By ergodic theorems we mean results concerning the convergence of the time aver-
ages1

1

n

n−1∑
i=0

f(T i(x))

of a function f : X → C along the trajectory (T i(x))∞i=0 of a point x ∈ X. If the limit
exists for a given function f and a given point x, we denote it by f+(x):

f+(x) = lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) . (2.1)

In this section we always assume that f ∈ C(X). Nevertheless, the above limit is to be
understood one point at a time, as the limit of a sequence of complex numbers.

We begin by defining two special classes of functions.

1Such averages are also called ergodic averages or Birkhoff averages.
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10 2. CONTINUOUS AND MEASURABLE TRANSFORMATIONS

Definition 2.1. A function f ∈ C(X) is called invariant

f = f ◦ T .

Thus,
I = {f ∈ C(X) : f = f ◦ T}

is the set of all invariant functions.

A function f ∈ C(X) is called a coboundary if there exists g ∈ C(X) such that

f = g − g ◦ T .

Thus,
B = {g − g ◦ T : g ∈ C(X)}

is the set of all coboundaries.

Both I and B are clearly linear subspaces of C(X). Moreover, I is closed but B is
generally not closed. Note that f ∈ B̄ if and only if there exists a sequence fn ∈ B, n ≥ 1,
which converges to f in C(X): limn→∞ ‖fn − f‖∞ = 0.

Let us immediately make the following observations:

Lemma 2.2. Let f ∈ C(X).

(1) If f+(x) exists for some x ∈ X, then (f ◦ T )+(x) and f+(T (x)) exist and

(f ◦ T )+(x) = f+(T (x)) = f+(x) .

(2) If f+(x) exists for all x ∈ X and if f+ ∈ C(X), then f+ = f+ ◦ T . That is,

f+ ∈ I .

Proof. The first claim follows from 1
n

∑n−1
i=0 (f ◦ T ) ◦ T i = 1

n

∑n−1
i=0 (f ◦ T i) ◦ T =

1
n

∑n−1
i=0 f ◦ T i + 1

n
(f ◦ T n − f), because f is bounded. The second claim is a corollary of

the first one. �

Invariant functions and coboundaries play an important role in ergodic theory. For
example, we have the following result:

Lemma 2.3. For invariant functions,

f+ = f , f ∈ I ,
where the convergence is uniform. For (limit points of the set of) coboundaries,

f+ = 0 , f ∈ B̄ ,

where the convergence is uniform. In particular,

I ∩ B̄ = {0} .

Proof. (1) If f ∈ I, then 1
n

∑n−1
i=0 f ◦ (T i(x)) = 1

n

∑n−1
i=0 f(x) = f(x) for all x ∈ X.

(2) On the other hand, if f ∈ B, there exists g ∈ C(X) such that f = g− g ◦T . Then
1
n

∑n−1
i=0 f ◦ T i = 1

n
g − 1

n
g ◦ T n, which converges to 0 uniformly by the boundedness of g.

The result now extends to all f ∈ B̄ by approximation: given any ε > 0, there exist fε ∈ B
such that ‖f − fε‖∞ ≤ ε

2
and Nε such that

∥∥ 1
n

∑n−1
i=0 fε ◦ T i

∥∥
∞ ≤

1
2
ε for all n ≥ Nε. Since∥∥ 1

n

∑n−1
i=0 f ◦ T i −

1
n

∑n−1
i=0 fε ◦ T i

∥∥
∞ ≤

1
2
ε, we see that

∥∥ 1
n

∑n−1
i=0 f ◦ T i

∥∥
∞ ≤ ε if n ≥ Nε.

Because ε was arbitrary, limn→∞
1
n

∑n−1
i=0 f ◦ T i = 0 uniformly.



1. ERGODIC THEOREM FOR CONTINUOUS TRANSFORMATIONS 11

(3) If f ∈ I ∩ B̄ then f = f+ = 0 by the preceding parts of the lemma. �

Clearly, the subspaces I and B̄ are special for the convergence of time averages. We
have seen that f+(x) exists for all x ∈ X and that f+ ∈ C(X), provided f ∈ I ⊕ B̄.2
In fact, the next theorem shows that this is true if and only if f ∈ I ⊕ B̄. The theorem
we present is a slight generalization of a similar theorem appearing in William Parry’s
textbook [9].

Theorem 2.4 (Ergodic theorem for continuous transformations). Let X be a compact
metric space and T : X → X a continuous transformation. Let

Ap = {f ∈ C(X) : f+(x) exists for all x ∈ X and f+ ∈ C(X)}

and

Au =

{
f ∈ C(X) :

1

n

n−1∑
i=0

f ◦ T i converges uniformly to f+ ∈ C(X)

}
be the subspaces of C(X) on which the time averages converge pointwise and uniformly,
respectively, to a continuous limit. Then

Ap = Au = I ⊕ B̄ .

A few remarks on the theorem are in order. First, the only distinction of Ap and Au
is that if f belongs to the former, then the convergence to f+ is pointwise (for every
point of X), whereas in the case of the latter it is uniform. In the letter case f+ ∈ C(X)
is automatic, but in the former this has to be imposed separately. Thus, it has turned
out that pointwise convergence of the time averages to a continuous limit is equivalent
to uniform convergence of the time averages. Moreover, this happens if and only if f
can be written as f = g + h, where g is invariant and h is a coboundary or, more
generally, the limit of a uniformly converging sequence of coboundaries. The second
remark is that the theorem says absolutely nothing about the size of the subspaces Ap, Au
and I⊕ B̄ — just that they coincide. The theorem in Parry’s book is the special case that
Ap = C(X) ⇔ Au = C(X) ⇔ I ⊕ B̄ = C(X). Another ergodic theorem (Theorem 2.24)
for continuous transformations, which identifies a sufficient (but not necessary) condition
for Ap = Au = I ⊕ B̄ = C(X), will be proved shortly, once enough machinery has been
developed.

Of course, we are assuming here that X is a compact metric space and T is continuous,
and we are working on the space of continuous functions C(X). Nevertheless, this theorem
is a good place to embark on a journey toward more general results. In particular, it
outlines a strategy to prove the much harder ergodic theorem of Birkhoff for measurable
transformations later on.

Proof of Theorem 2.4. We follow [9]. It is clear that Ap and Au are linear normed
subspaces of C(X). It is equally clear that I ⊕ B̄ ⊂ Au ⊂ Ap, by Lemma 2.3. It remains
to show that Ap ⊂ I ⊕ B̄. To this end, we define a continuous linear projection operator
on the normed space Ap by assigning to each f its limit time average f+:

P : Ap → I : Pf = f+ .

2We write I ⊕ B̄ for I + B̄ to remind the reader that I and B̄ are closed subspaces and I ∩ B̄ = {0}.
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This is indeed defined for every f ∈ Ap. Since f+ is an invariant function and (f+)+ = f+,
we have imP = I ⊂ Ap and P 2 = P , so P is indeed a projection operator on Ap. (The
reader should check that P is linear and continuous.) By Lemma B.1,

Ap = imP + kerP = I + kerP , I ∩ kerP = {0} ,
where kerP is a subspace of Ap, closed in the subspace topology.

Since B̄ ⊂ kerP , the remaining task is to show that B̄ = kerP . To this end, we
employ Lemma B.3: it suffices to check that if L : Ap → C is an arbitrary continuous
linear functional which vanishes on B̄ (in particular on B), then it also vanishes on kerP .
Let L be such a functional. Since f ◦ T i − f ◦ T i+1 ∈ B for all i ≥ 0 and all f ∈ Ap, we
have L(f ◦ T i − f ◦ T i+1) = 0, which results in L(f) = L(f ◦ T ) = L(f ◦ T 2) = · · · .3 On
the other hand, if f ∈ kerP , then f+ = Pf = 0, which means that

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = 0 pointwise. (2.2)

If we can exchange the order of the limit and the functional L in

0 = L(0) = L

(
lim
n→∞

1

n

n−1∑
i=0

f ◦ T i
)

= lim
n→∞

1

n

n−1∑
i=0

L(f ◦ T i) = lim
n→∞

1

n

n−1∑
i=0

Lf = Lf ,

then L indeed vanishes on kerP and we are done. The subtlety here is that the convergence
in (2.2) is not uniform. (If it were uniform, the desired property would follow from the
continuity of L.) Instead, since the sequence limn→∞

1
n

∑n−1
i=0 f ◦ T i, n ≥ 1, is uniformly

bounded, we can appeal to the dominated convergence theorem for linear functionals
(Theorem B.9) and reach the desired conclusion.4 �

2. Pushforward and invariant measures

Ergodic theory concerns the study of the trajectories (T i(x))∞i=0 of the initial points x ∈
X for a map T : X → X. Given x, its trajectory is completely determined by the iterates
of T , i.e., it is deterministic. Nevertheless, it is highly interesting to pick the initial
point x randomly, according to some probability measure m. This means that x is a
random variable, with values in X, such that

Probability(x ∈ A) = m(A) (2.3)

for any measurable set A ⊂ X. (We say that x is distributed according to m, or that m
is the distribution of x.) For each realized value of x its trajectory is still given determin-
istically by the iterates of T — but since x is random, also the trajectory (T i(x))∞i=0 is
random; it is actually a sequence of random variables T i(x), i ≥ 0. (Sequences of random
variables are called stochastic processes). For a random initial point it makes sense to ask
how the trajectory behaves with a high probability, and so on. An obvious question arises:
if the distribution of x is m, what is the distribution of T (x) (and of the higher iterates

3Note that each f ◦ T j belongs to the domain Ap of L since (f ◦ T j)+ = f+ by Lemma 2.2.
4Strictly speaking, the dominated convergence theorem applies to continuous linear functionals de-

fined on the entire space C(X), while the functional L is only defined on the subspace Ap. The way
around this is to use the Hahn–Banach extension theorem (Theorem B.2): the functional L admits an
extension to a functional ` : C(X) → C which is continuous, with the same norm as L, and coincides
with L on the subspace Ap. To complete the proof one simply writes ` in place of L below (2.2) in the
proof.
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T i(x), i ≥ 2)? More precisely, given a measurable set A ⊂ X, what is the probability of
the event Tx ∈ A? Since Tx ∈ A⇔ x ∈ T−iA, in view of (2.3) we have

Probability(T (x) ∈ A) = m(T−1A) , (2.4)
provided that T−1A is measurable. The right side specifies the distribution of T (x), which
leads to the following definition:

Definition 2.5. Let (X,B) be a measurable space and T : X → X a measurable map.
If m is a measure on (X,B), its pushforward is the measure T∗m on (X,B) defined by

T∗m(A) = m(T−1A) , A ∈ B .

This also defines the map
T∗ : m 7→ T∗m ,

from the set of all measures on (X,B) into itself.

Exercise 2.6. Check that T∗m is indeed a measure on (X,B), and that it is a probability
measure if m is. If T n∗ denotes the n-fold composition of T∗, check that

T n∗ = (T n)∗ , n ≥ 1 .

Exercise 2.7. A family of probability measures we often encounter are the measures δx,
x ∈ X, defined by

δx(A) = 1A(x) , A ∈ B .

In other words, δx assigns measure 1 to any set containing x (including the singleton {x}
if it is measurable) and measure 0 otherwise. It is called the point mass at x. Prove that

T∗δx = δT (x) .

To recapitulate, (2.4) sates that if m is the distribution of x, then the pushforward T∗m
is the distribution of T (x). Note also that (T 2)∗m = T∗(T∗m) is the distribution of T 2(x)
and so on. Of course, in general the distributions of x and T (x) are different, m 6= T∗m.
For a special measure m, which suitably reflects the properties of the map T , m = T∗m is
possible. This motivates the following definition:

Definition 2.8. Let (X,B) be a measurable space and T : X → X a measurable map. A
measure m on (X,B) is called an invariant measure of T , if

T∗m = m meaning m(T−1A) = m(A) , A ∈ B .

In this case (X,B,m, T ) — or just T — is called a measure-preserving transforma-
tion, briefly mpt. If m is a probability measure, it is called a probability-preserving
transformation, briefly ppt.

Thus, invariance of the initial measure m means precisely that x and T (x) are identi-
cally distributed. It follows that all T i(x), i ≥ 0, are identically distributed. (In fact, the
stochastic process (T i(x))i≥0 is then stationary.) Beware, however, that the random vari-
ables T i(x) are far from being independent: if T i(x) is known, then T i+j(x) is completely
determined for all j ≥ 1.

Convention. In these notes a measure is positive (m(A) ≥ 0 for all A ∈ B) and finite
(m(X) < ∞), unless otherwise stated; see Section 1 in Appendix A. Such a measure
can be normalized to a probability measure (m is positive and m(X) = 1) excluding the
trivial case in which the measure is identically zero. Thus, the study of mpts reduces to
the study of ppts, which is what we will focus on.
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To avoid any confusion, let us record this as a definition; see Section 1 of Appendix A
for the terminology used.

Definition 2.9. Let (X,B) be a measurable space. We write M(X,B) for the set of
finite (positive) measures, Ms(X,B) for the set of signed measures, and P(X,B) for
the set of probability measures. If T is a measurable transformation of (X,B), we write
PT (X,B) for the set of invariant probability measures. When the underlying measurable
space is clear, we simply writeM,Ms, P and PT . Clearly PT ⊂ P ⊂M ⊂Ms.

As mentioned, for a measure m to be invariant it has to be special and take into
account the properties of the map T . Here are two examples of ppts we will return to
several times later on:

Exercise 2.10 (Rotations of the circle). Let X be the circle S1 obtained from the unit
interval [0, 1] by identifying the end points, and let T : X → X : x 7→ x + α (mod 1),
where α ∈ (0, 1) is a fixed number. Note that T describes a rotation of the circle with
circumference 1 by the angle 2πα. Show that the Lebesgue measure is invariant. What
does this mean from the probabilistic point of view above?

Exercise 2.11 (Angle doubling map). Let X be the circle S1 as above, and let T be
the angle doubling map T : X → X : x 7→ 2x (mod 1). Show that the Lebesgue measure
is invariant. What does this mean from the probabilistic point of view above?

At this point, it is not clear whether an invariant measure exists for a given map
and whether there could be more than one. We can, however, already make a useful
elementary observation:

Lemma 2.12. Let (X,B) be a measurable space and T : X → X a measurable map.
Then P and PT are convex subsets ofM.

Exercise 2.13. Prove Lemma 2.12.

In particular, Lemma 2.12 sheds some light on the uniqueness issue: if there are two
invariant measures m1 6= m2, then there are uncountably many of them, as (1−t)m1 +tm2

is invariant for each t ∈ [0, 1]. We will return to such considerations later, and for this
reason the following trivial warmup example is in order:

Exercise 2.14. Let X = [0, 1] and let T be the identity map idX . Show that any m ∈ P
is invariant. In particular, δx is an invariant measure for any x ∈ X.

The preceding example demonstrates that there exist maps with uncountably many
invariant probability measures — corresponding to the extreme points of the convex set PT
— which cannot be expressed as convex combinations of any other invariant probability
measures. It turns out that this feature is quite typical. For instance, the angle doubling
map and rotations of the circle by a rational angle have it.

Let us also present a useful characterization of pushforward and invariant measures:

Lemma 2.15. Let (X,B) be a measurable space and T : X → X a measurable map.

(1) Given two measures m,m′ ∈ P, we have m′ = T∗m if and only if∫
X

f dm′ =

∫
X

f ◦ T dm , f ∈ L1(X,B,m′) .
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(2) A measure m ∈ P is invariant if and only if∫
X

f dm =

∫
X

f ◦ T dm , f ∈ L1(X,B,m) .

Equivalently, the classes L1(X,B,m′) and L1(X,B,m) can be replaced by bounded
measurable functions, bounded nonnegative measurable functions, simple functions, or
indicator functions of measurable sets as is evident from the proof below. The formulation
above was chosen because if, say, the invariance of m has been established, then the
integral identity is immediately at our disposal for all absolutely integrable functions.
But to reiterate, in the opposite direction it is sufficient to check the integral identity for
indicator functions in order to infer that m is invariant.

Proof of Lemma 2.15. (1) If m′ = T∗m, the integral identity holds for indicator
functions 1A, A ∈ B:∫

X

1A dm′ = m′(A) = m(T−1A) =

∫
X

1T−1A dm =

∫
X

1A ◦ T dm .

The property extends first to all nonnegative B-measurable functions f by the monotone
convergence theorem (Theorem A.3), because there exists an increasing sequence of simple
functions sn ↑ f . Then it extens to all f ∈ L1(X,B,m′) by the decomposition of f =
f+ − f− into its positive and negative part. (In particular, we have shown that f ∈
L1(X,B, T∗m) ⇒ f ◦ T ∈ L1(X,B,m).) In the opposite direction, let A ∈ B and set
f = 1A. As above, the integral identity yields m′(A) = m(T−1A), so that m′ = T∗m. (2)
is an immediate consequence of (1) by setting m′ = m. �

We finish with an exercise introducing a concept needed later.

Exercise 2.16. Let (Xi,Bi,mi, Ti), i ∈ {1, 2}, be probability-preserving transformations.
The product transformation (X1 ×X2,B1 ×B2,m1 ×m2, T1 × T2) is defined by

(T1 × T2)(x, y) = (T1(x), T2(y)) .

Show that T1 × T2 is a probability-preserving transformation.

[Notation: B1 ×B2 is the sigma-algebra generated by the measurable rectangles A1 × A2

with A1 ∈ B1 and A2 ∈ B2. The product measure m1 × m2 is the unique measure on
B1 ×B2 satisfying m(A1 × A2) = m1(A1) m2(A2).]

3. Existence of invariant measures

Earlier, we introduced the concept of an invariant measure, a measure m satisfying
the identity m = T∗m. However, it is not clear at all whether such measures exist. In this
section we obtain a partial answer to this question:

Theorem 2.17. Let X be a compact metric space and T : X → X a continuous map.
Then there exists at least one invariant Borel probabillity measure m.

In general there may be many invariant measures, also for continuous maps on compact
metric spaces, as we observed in Exercise 2.14.

We will actually give two alternative proofs of Theorem 2.17, because each is in-
formative in its own right. Both proofs rely on the fact that, when T is a continuous
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transformation of a compact metric space, P is compact (as we will see), and the first one
also uses the convexity of P .

Before we can speak about compactness, the topology must be specified, of course.
We endowMs ⊃ P ⊃ PT , the set of signed measures, with the so-called weak topology
of measures. It is described in Section 6 of Appendix B in some detail; we only present
the two facts about it that are relevant to us.

Fact 1: A sequence mn ∈ Ms, n ≥ 1, converges to m ∈ Ms — written mn ⇒ m — if
and only if

lim
n→∞

∫
X

f dmn =

∫
X

f dm , f ∈ C(X) .

Fact 2: The weak topology is metrizable on the subset P . In particular, a map F : P → P
is continuous if and only if

mn ⇒ m implies F (mn)⇒ F (m) .

A related observation is that in the current setting it is natural to work with continuous
functions f ∈ C(X) instead of more general measurable functions f : X → C, and
this usually amounts to little loss of generality. In particular, the following version of
Lemma 2.15 will be needed soon:

Lemma 2.18. Let X be a compact metric space and T : X → X a continuous map.

(1) Given two measures m,m′ ∈ P, we have m′ = T∗m if and only if∫
X

f dm′ =

∫
X

f ◦ T dm , f ∈ C(X) .

(2) A measure m ∈ P is invariant if and only if∫
X

f dm =

∫
X

f ◦ T dm , f ∈ C(X) .

Exercise 2.19. Prove Lemma 2.18.

[Hint: Since the Borel sigma-algebra is generated by the open sets, m′ is the pushforward
of m if and only if m′(U) = m(T−1U) for all open sets U ⊂ X. The indicator function 1U
of any open set U can be approximated by a bounded sequence of continuous functions.]

Returning to the question whether an invariant probability measure exists, observe
that the identity

m = T∗m (2.5)
can be viewed as a fixed-point problem for the map T∗ : P → P .

3.1. The first proof: finding an invariant measure as a fixed point. We will
prove that there indeed exists a fixed point, borrowing a classical idea from the topology of
Euclidean spaces: recall that if K ⊂ E is a compact convex subset of a Euclidean space E
and g : K → K is a continuous function, then Brouwer’s fixed point theorem guarantees
the existence of a fixed point g(x) = x ∈ K. The Schauder–Tychonoff fixed point theorem
(Theorem B.4) generalizes this result to infinite dimensions, which is required for our
purposes. Before we can apply it, we need to establish the desired structure of P :
Lemma 2.20. Let X be a compact metric space. Then the set P of all Borel probability
measures on X is convex and compact in the weak topology of measures.
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Proof. We have already proved convexity. Since the weak topology is metrizable
on P , compactness is equivalent to every sequence mn ∈ P , n ≥ 1, having a subse-
quence mnk

, k ≥ 1, which converges weakly to a limit m ∈ P . But note that a sequence
of probability measures is bounded (mn(X) = 1), so Lemma B.12 applies and there exists
a subsequence mnk

⇒ m ∈ M. This means that limn→∞
∫
X
f dmn =

∫
X
f dm for all

f ∈ C(X). Setting f = 1, we see that m is a probability measure, so P is compact. �

We also need to establish the continuity of T∗ on P :

Lemma 2.21. Let X be a compact metric space and T : X → X a continuous map. Then
the map T∗ : P → P is continuous in the weak topology of measures.

Proof. It suffices to show that mn ⇒ m implies T∗mn ⇒ T∗m. The second condition
means that

∫
X
f d(T∗mn) →

∫
X
f d(T∗m) for all f ∈ C(X). By Lemma 2.18, this is

equivalent to
∫
X
f ◦ T dmn →

∫
X
f ◦ T dm. Since f ◦ T is continuous, the latter is true by

the assumption mn ⇒ m. �

We need one last fact from Appendix B, which the reader is advised to take for granted:

Fact 3: The setMs of all signed Borel measures is a (real) vector space, and equipped
with the weak topology of measures it is a locally convex space.

Proof of Theorem 2.17. We now know that P is a compact convex subset of the
locally convex spaceMs and that T∗ : P → P is a continuous map. Hence, the Schauder–
Tychonoff fixed point theorem yields the existence of m ∈ P such that (2.5) holds, meaning
that m is an invariant Borel probability measure. �

3.2. The second proof: finding an invariant measure as the limit of ap-
proximately invariant measures. Recall from analysis that fixed points x = g(x) are
often sought by iteration: one first picks a point x0, constructs a sequence xi, i ≥ 0,
with xi = g(xi−1) = g◦i(x0), and then tries to show that limi→∞ xi = x exists. If g is
continuous, then the limit x is a fixed point.

We are now tempted to pick a measure µ ∈ P and to show that T i∗µ converges weakly
to a fixed point m of T∗ — an invariant measure. This generally fails. However, it is a
useful observation to make that if T i∗µ converges to m, then so does the averaged sequence

mn =
1

n

n−1∑
i=0

T i∗µ , n ≥ 1 ,

and the limit is m. But what if the former does not converge? Since P is compact,
both T i∗µ and mn do have converging subsequences, no matter which measure µ is. Our
preference for the averaged sequence is revealed by the following exercises, which the
reader is encouraged to solve:

Exercise 2.22. Show that if there is a weakly converging subsequence mnk
, k ≥ 1, then

its limit m is an invariant measure.

[Hint: Compare mnk
and T∗mnk

.]

A similar statement is generally not true for a converging subsequence of T i∗µ, i ≥ 0:
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Exercise 2.23. Let X be the set of two points {0, 1} endowed with the discrete metric:
d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. Let T : X → X be the map that exhanges
the points: T (0) = 1 and T (1) = 0. Show that T has a unique invariant probability
measure, and that any other probability measure µ satisfies

µ = T 2
∗ µ = T 4

∗ µ = · · · and µ 6= T∗µ = T 3
∗ µ = T 5

∗ µ = · · · .

Proof of Theorem 2.17. Let µ ∈ P be arbitrary and define the averaged se-
quence mn, n ≥ 1, as above. Since mn is a convex combination of probability measures,
mn ∈ P . Since P is compact (Lemma 2.20) in the weak topology of measures, there exists
a weakly converging subsequence. By Exercise 2.22 the limit is an invariant measure. �

3.3. Uniqueness of an invariant measure. As we saw in Theorem 2.17, a continu-
ous map on a compact metric space always has an invariant measure. On the other hand,
Exercise 2.14 revealed that a given map may have (even uncountably) many of them.
In this section we characterize those continuous maps that have precisely one invariant
measure, following Parry’s book [9]. Uniqueness turns out to be intimately related to the
convergence of the time averages 1

n

∑n−1
i=0 f(T i(x)) and to whether the limit f+ in (2.1) is

a constant function. For brevity, we write g ∈ C if g : X → C is a constant function.

Theorem 2.24 (Another ergodic theorem for continuous transformations). Let X be a
compact metric space and T : X → X a continuous map. Then T has a unique invariant
Borel probability measure m if and only if one of the following equivalent conditions is
satisfied:

(1) Given any f ∈ C(X), the limit f+(x) exists for all x ∈ X and f+ ∈ C.

(2) Given any f ∈ C(X), 1
n

∑n−1
i=0 f ◦ T i converges uniformly to f+ ∈ C.

(3) C(X) = C⊕ B̄.

If any one of these is satisfied, then the constant functions are the only invariant ones:

I = C .

Moreover, the constant f+ is determined by the unique invariant measure:

f+ =

∫
X

f dm . (2.6)

Proof. (i) We first prove that (1)–(3) are equivalent and imply I = C. By The-
orem 2.4, pointwise convergence of the time averages to a continuous limit (such as a
constant function) is equivalent to uniform convergence, so (1) ⇔ (2). Since f+ = 0
for f ∈ B̄ and f+ = f for f ∈ C, we obtain (3) ⇒ (1). By Theorem 2.4 we have (1)
⇒ C(X) = I ⊕ B̄. Introducing the linear operator P : C(X) → I : Pf = f+, we note
that I = imP . But (1) states that imP = C, so I = C and (1) ⇒ (3).

(ii) Suppose there are two different invariant measures m1 and m2. Then there exists
a continuous function f ∈ C(X) such that

∫
X
f dm1 6=

∫
X
f dm2. Note that by invariance∫

X
f dmk =

∫
X
f ◦ T i dmk for each i ≥ 1 and k = 1, 2. If (1) holds, then∫

X

f dmk =

∫
X

1

n

n−1∑
i=0

f ◦ T i dmk →
∫
X

f+ dmk = f+
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as i→∞ for each k = 1, 2, which is contradicts m1 6= m2. Here we used the dominated (or
bounded) convergence theorem. Hence (1)⇒ the invariant measure m is unique and (2.6)
holds.

Finally, suppose (1) does not hold. Then there exists f ∈ C such that either (a) f+(x)
fails to exists for some x ∈ X or (b) f+ exists on all of X but is not constant. In either
case, we next construct two distinct invariant measures using a method similar to the one
in the (second) proof of Theorem 2.17 in Section 3.2, which completes the proof.

Case (a): There exist two subsequences N1,N2 ⊂ N along which the limits disagree,
that is, limn→∞, n∈Nk

1
n

∑n−1
i=0 f(T i(x)) = ck ∈ C (k = 1, 2) where c1 6= c2. Note first that

f(T i(x)) =

∫
X

f ◦ T i dδx =

∫
X

f d(T i∗δx)

by Lemma 2.18. Thus, the measures

µn =
1

n

n−1∑
i=0

T i∗δx ∈ P , n ≥ 1 ,

satisfy
1

n

n−1∑
i=0

f(T i(x)) =

∫
X

f dµn .

But P is compact in the weak topology of measures (Lemma 2.20), so both sequences
(µn)n∈Nk

must have weakly convergent subsequences: there exist N ′k ⊂ Nk and mk ∈ P
(k = 1, 2) such that µn ⇒ mk as n→∞ with n ∈ N ′k. We observed earlier (Exercise 2.22)
that such limits mk are always invariant measures. Since c1 6= c2, we must have m1 6= m2.

Case (b): There exist two points x1, x2 ∈ X for which f+(x1) 6= f+(x2). A construction
similar to the one in case (a) again yields two distinct invariant measures. We leave the
details to the reader. �

The property of a map having a unique invariant measure has been given a special
name:

Definition 2.25. Suppose (X,B) is a measurable space and T : X → X is a measurable
map. If T has a unique invariant probability measure, we say that T is uniquely ergodic.

In other words, Theorem 2.24 characterizes uniquely ergodic continuous maps on a
compact metric space. We finish our discussion with an example of unique ergodicity:

Exercise 2.26 (Irrational rotations are uniquely ergodic, the angle doubling map is not).
A sequence of numbers (xn)n≥0 ⊂ [0, 1] is called uniformly distributed if

lim
n→∞

1

n

n−1∑
i=0

1I(xi) = |I| (2.7)

holds for any interval I ⊂ [0, 1]. Here |I| is the length of the interval. It is not hard to
see that (2.7) is equivalent to the property that

lim
n→∞

1

n

n−1∑
i=0

f(xi) =

∫ 1

0

f(x) dx
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holds for any continuous function f : [0, 1] → C satisfying f(0) = f(1). Moreover,
Hermann Weyl has proved that (2.7) is also equivalent to

lim
n→∞

1

n

n−1∑
i=0

e2πikxi = 0 , k ∈ Z \ {0} .

Now, let T be a rotation of the circle as in Exercise 2.10.

(a) Show that T is uniquely ergodic if α is irrational.

(b) Show that T has uncountably many invariant probability measures if α is rational.
[Hint: Show that there exists q ≥ 0 such that any point x ∈ X is q-periodic: T q(x) = x.
Then consider the pushforward measures T i∗δx, i ≥ 0.]

Finally, let T be the angle doubling map in Exercise 2.11.

(c) Show that T is not uniquely ergodic.

4. Extreme points of the convex set PT for continuous transformations

As we observed in Theorem 2.24, the property of having a unique invariant measure m
has to do with the convergence of the time averages 1

n

∑n−1
i=0 f(T i(x)) to a constant f+ ∈ C,

and that constant is given by the invariant measure, namely f+ =
∫
X
f dm; see (2.6). We

will extend such observations to the more general case of having a whole family of invariant
measures. For this reason, we will study the structure of the set PT in this section and
the next in some detail.

Let us summarize what we know about the set of invariant measures thus far:

Theorem 2.27. Let X be a compact metric space and T : X → X a continuous map.
Then the set PT of all invariant Borel probability measures is nonempty, convex and com-
pact in the weak topology of measures.

Proof. Convexity of PT was proved in Lemma 2.12 and PT 6= ∅ in Theorem 2.17.
Since PT ⊂ P and P is compact (Lemma 2.20), it suffices to check that PT is closed.
To that end, suppose mn ∈ PT converges weakly to m ∈ P . Since T∗ is continuous
(Lemma 2.21), we have mn = T∗mn converges weakly to T∗m. This implies m = T∗m, or
m ∈ PT . �

Since convex combinations of invariant measures are invariant, it is reasonable to
suspect that there might exists a special family of invariant measures such that all the
others can be obtained by convex combinations of them. Namely, recall that if K is a
compact convex set of a Euclidean space and E is the set of its extreme points, then any
x ∈ K can be expressed as a convex combination x = λ1e1 + · · ·+ λnen, for some weights
λ1, . . . , λn ∈ (0, 1) with λ1+· · ·+λn = 1 and extreme points e1, . . . , en ∈ E 5. In our infinite
dimensional setting the situation is far from obvious, but owing to Theorem 2.27 we can
appeal to the Choquet theorem (Theorem B.6) and obtain a similar representation of an

5A point x ∈ K of a convex set K is called an extreme point of K if it is not an interior point of
a chord connecting two distinct points of K. In other words, if x = (1 − t)u + tv for some u, v ∈ K
and t ∈ (0, 1), then x = u = v.
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arbitrary invariant measure in PT as a barycenter, a generalized convex combination, of
the extreme points of PT :
Theorem 2.28. Let X be a compact metric space and T : X → X a continuous map.
Denote by ET ⊂ PT the set of extreme points of the compact convex set PT . Given any
m ∈ PT , there exists a Borel probability measure λ supported on ET such that

m =

∫
ET
µ dλ(µ) . (2.8)

In particular, ET is nonempty.

Before giving the proof, let us make some remarks and observations. The representa-
tion (2.8) means that

m(A) =

∫
ET
µ(A) dλ(µ) , A ∈ B ,

or, equivalently, that∫
X

f dm =

∫
ET

(∫
X

f dµ

)
dλ(µ) , f ∈ C(X) .

Thus, given any invariant measure m, the measure m(A) of a Borel set is determined by
taking a suitable average of the extreme measures µ(A), where the weights are determined
by λ. Since the weights are generally not unique even in finite dimensional convex combi-
nations, the proof given below leaves the question of uniqueness of the measure λ open.6
Note that λ is a measure on the set of measures ET , which is perhaps a bit abstract, but
there is no problem at all from the measure-theoretic point of view because PT has a
topology — the weak topology of measures — and ET is in fact a Borel subset with re-
spect to it. By definition, the maps µ 7→

∫
X
f dµ, f ∈ C(X), are continuous with respect

to the said topology. That λ is supported on ET means that λ is a measure on PT and
λ(PT \ ET ) = 0.

Proof of Theorem 2.28. Recall that the set Ms of all signed Borel measures
equipped with the weak topology of measures is a locally convex space and that this
topology is metrizable on P . Since PT ⊂ P is compact and convex, we may appeal to the
Choquet Theorem (Theorem B.6), which implies the representation part. On the other
hand, since PT is nonempty, it now follows that ET is nonempty. �

We now illustrate Theorem 2.28 with the simple example encountered in Exercise 2.14.

Exercise 2.29. Let T be the identity map on X = [0, 1] and recall that every measure
is invariant, PT = P. Show that the extreme points are precisely the point masses, i.e.,
ET = {δx : x ∈ X}. Thus, Theorem 2.28 implies that any m ∈ P is the barycenter of
point masses:

m =

∫
{δx :x∈X}

µ dλ(µ)

for some Borel probability measure supported on {δx : x ∈ X}. This is not very surprising:
check directly that

m =

∫
X

δx dm(x) ,

6In our ergodic-theoretic setting λ is essentially unique; the set PT can be thought of as an infinite
dimensional simplex, not just a convex set.
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which means that m(A) =
∫
X
δx(A) dm(x) for all A ∈ B. Note the distinction between

the two representations, however, that the measure λ is defined on the set of measures P.

As a slightly less trivial example, we will soon see how the invariant measures of
rational rotations of the circle can be decomposed into generalized convex combinations
of its extreme measures.

5. Ergodicity

We continue our study of the convex set PT and the set ET of its extreme points with
the eventual goal of characterizing the convergence of the time averages 1

n

∑n−1
i=0 f(T i(x)),

in the general setting of measurable transformations. This calls for the introduction of
the concepts of invariant sets and ergodic measures and their basic properties.

Definition 2.30. Let (X,B) be a measurable space and T : X → X a measurable map.

(1) A set A ∈ B is (strictly) invariant if T−1A = A.
(2) Given m ∈ PT , a set A ∈ B is almost invariant if m(T−1A∆A) = 0.7

The invariance condition T−1A = A has a dynamical characterization:
x ∈ A⇒ T (x) ∈ A, i.e., the trajectory of a point in A cannot escape from A

and
T (x) ∈ A⇒ x ∈ A, i.e., the trajectory of a point in Ac cannot enter A.

Almost invariance of a set with respect to an invariant measure means that similar
properties hold, except on a set of measure zero. A measurable set need not be invariant
even if it is made of trajectories:

Example 2.31. Let X = {0, 1}, B the sigma-algebra of all subsets of X, and T ≡ 0.
The set {0} consists of a trajectory, but it is not invariant since T−1{0} = X.

It is useful to make the following general observation about invariant measures:

Exercise 2.32. If m ∈ PT , then
m(A \ T−1A) = m(T−1A \ A) , A ∈ B . (2.9)

Hence, a set A ∈ B is almost invariant if and only if either m(A \ T−1A) = 0 or
m(T−1A \ A) = 0.

Exercise 2.33 (A dynamical characterization of almost invariant sets). Prove that A ∈ B
is almost invariant if and only if the trajectory of almost every x ∈ A is contained in A.

Note that the almost invariance of a set depends on the measure, while the invariance
of a set is a strictly set-theoretic concept. This distinction is often not very significant for
practical purposes. Of course, every invariant set is almost invariant with respect to any
measure, but there turns out to be a partial converse:

Lemma 2.34. Suppose (X,B,m, T ) is a probability-preserving transformation and that
A ∈ B is an almost invariant set. There exists a strictly invariant set A0 = T−1A0 ∈ B
such that m(A0 ∆A) = 0.

7Here A∆B = (A \B) ∪ (B \A) denotes the symmetric difference of the sets A ⊂ X and B ⊂ X.
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Exercise 2.35. Prove Lemma 2.34.

[Hint: Define A0 as the set of all those points whose trajectories visit A infinitely often.
That is, A0 = {x ∈ X : T i(x) ∈ A for infinitely many i ≥ 1} = ∩∞n=1 ∪∞i=n T−iA. Show
that, for all i ≥ 1, m(T−iA∆A) = 0 holds, and that this implies m(A0 ∆A) = 0.]

Invariant probability measures m and (almost) invariant sets A are closely related.
The next exercise shows that if 0 < m(A) < 1, m can be decomposed into the convex
combination

m = m(A)m( · |A) + (1−m(A))m( · |Ac)
of its conditional parts on A and Ac. In particular, m cannot be an extreme point of PT .

Exercise 2.36. Suppose (X,B,m, T ) is a probability-preserving transformation and that
A ∈ B is an almost invariant set with 0 < m(A) < 1. Observe that Ac has the
same properties, and show that the conditional measures m(B |A) = 1

m(A)
m(B ∩ A) and

m(B |Ac) = 1
m(Ac)

m(B ∩ Ac), B ∈ B, are both invariant.

If A is moreover (strictly) invariant, show that the restrictions (A,B ∩ A,m( · |A), T |A)
and (Ac,B ∩ Ac,m( · |Ac), T |Ac) define probability-preserving transformations.

(Notation: Given E ∈ B, B∩E = {B∩E : B ∈ B} and T |E : E → X : T |E(x) = T (x).)

Interpretation: T separates into the two components T |A and T |Ac which “do not interact”.

If, say, A contained a smaller invariant set A1, one could further decompose mA into
its conditional parts on A1 and Ac1, and so on, which would lead to convex combinations
m =

∑n
i=1 m(Ei)m( · |Ei) of invariant measures on smaller and smaller invariant sets Ei

with ∪ni=1Ei = A ∪ Ac = X. Let us be heuristic for the moment. It benefits intuition
to think that extreme measures (which by definition cannot be decomposed as above)
“live on minimal invariant sets” which cannot be split into smaller invariant sets. Then,
repeating the above procedure of conditioning the measure as many times as possible,
one should arrive at a representation of m as a (possibly infinite) convex combination of
extreme measures, like in (2.8), without the continuity and compactness assumptions of
Theorem 2.28. We will return to this topic in Section 6.

We already defined invariant functions in the context of a continuous map T : X → X
on a compact metric space X as continuous functions satisfying the relation f = f ◦ T .
In the general measure-theoretic setting this definition is not sufficient, even if X is a
topological space.

Definition 2.37. Let (X,B) be a measurable space and T : X → X a measurable map.

(1) A measurable function f : X → C is (strictly) invariant if f = f ◦ T on X.
(2) Given an invariant measure m, a measurable function f : X → C is almost

invariant if f = f ◦ T almost everywhere with respect to m.

There is no loss of generality in assuming that an invariant function is real valued.

Invariant sets and invariant functions are closely related:

Lemma 2.38. Let (X,B) be a measurable space and T : X → X a measurable map.

(1) A ∈ B is an invariant set if and only if 1A is an invariant function.
(2) A ∈ B is an almost invariant set if and only if 1A is an almost invariant function.
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(3) A function f : X → R is invariant if and only if its level sets {f > t} = {x ∈
X : f(x) > t}, t ∈ R, are invariant.

(4) A function is almost invariant if and only if its level sets are almost invariant.

Equivalently, one can use the level sets {f ≥ t}, {f < t} or {f ≤ t} in (3) and (4).

Exercise 2.39. Prove Lemma 2.38.

Of course, an invariant function is almost invariant with respect to any invariant
measure. But we also have the following counterpart of Lemma 2.34:

Lemma 2.40. If f is an almost invariant function with respect to m, then there exists a
strictly invariant function f0 such that f = f0 almost everywhere with respect to m.

Proof. We follow the book of Brin and Stuck [2]. Given f , let us define the measur-
able functions φi : X → C : x 7→ f(T i(x)) − f(x), i ≥ 1. Then each Ai = φ−1

i {0} is a
measurable set, and m(Ai) = 1 because f is almost invariant. Note that the set

A =
⋂
i≥1

Ai = {x ∈ X : f(T i(x)) is constant for all i ≥ 0}

is measurable and m(A) = 1. The intuition is that A is a good set, on which the invariance
property of the function f holds everywhere, even under repeated iterations of T . Using A,
we construct a modification f0 of f .

The first candidate for f0 that springs to mind is g = 1Af , which is measurable and
agrees with f on the set A of full measure. However, this candidate is not necessarily
invariant, because the set A is not necessarily invariant: If x ∈ A then T (x) ∈ A, meaning
A ⊂ T−1A, but there is no reason for the opposite inclusion to hold. To see that g is
not invariant, suppose that x ∈ Ac and T n(x) ∈ A for some n ≥ 1. Then g(x) = 0 and
g(T n(x)) = f(T n(x)), but there are no guarantees whatsoever that f(T n(x)) = 0, so g
fails to be invariant.

To overcome the issue above, we consider the set B consisting of all those points whose
trajectories visit A at least once (and therefore never leaves A again). It can be expressed
as

B =
⋃
n≥0

T−nA = {x ∈ X : ∃n ≥ 0 such that f(T i(x)) is constant for all i ≥ n} .

This is a measurable set, and m(B) = 1 because A ⊂ B. The set is also invariant,
but f is not invariant on B \ A, so also the candidate 1Bf for f0 fails. Fortunately, a
minor correction works: If x ∈ B, then there exists a minimal integer n(x) ≥ 0 such that
f(T i(x)) = f(T n(x)(x)) for all i ≥ n(x), so we define

f0(x) =

{
f(T n(x)(x)) if x ∈ B,
0 if x ∈ Bc.

This functions agrees with f on A, because n(x) = 0 for x ∈ A. We also have n(x) = k
precisely for x ∈ T−kA \ ∪k−1

n=0T
−nA, so f0 is measurable. As the reader may check, f0 is

invariant. �

The following concept has a key role in ergodic theory, as we will soon learn.
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Definition 2.41. An invariant measure m ∈ PT is ergodic, if each invariant set A =
T−1A ∈ B satisfies m(A) ∈ {0, 1}.

In words, a measure is ergodic if all invariant sets are trivial.

Exercise 2.42. Let T : S1 → S1 : T (x) = x + α (mod 1) be a rotation of the circle with
rational α ∈ (0, 1). Then every x ∈ X is periodic with the same period q; see Exercise 2.26.
(1) Show that the measures mx = 1

q
(δx + δT (x) + · · ·+ δT q−1(x)) are ergodic. (2) Show that

these are in fact the only ergodic probability measures.

[Hint: In (2), write α in irreducible form to determine the minimal q. Then show that an
ergodic probability measure must assign measure 1 to a set I ∪ T iI ∪ · · · ∪ T q−1I, where
I ⊂ S1 is a closed interval which can be made arbitrarily short.]

Since the ongoing discussion is somewhat lengthy and the topic may seem to have
drifted away from the convergence of time averages, some reassuring remarks are in or-
der. First, recall Definition 2.25, the definition of unique ergodicity. The terminology is
explained by the next exercise:

Exercise 2.43. Suppose (X,B) is a measurable space and that T : X → X is uniquely
ergodic. Prove that the (unique) invariant measure m ∈ PT is ergodic.

Next, recall that if T is a uniquely ergodic continuous map on a compact metric
space X, then the time averages limn→∞

1
n

∑n−1
i=0 f(T i(x)) =

∫
X
f dm for all x ∈ X and

all f ∈ C(X), where m is the unique (thus ergodic) invariant measure; see Theorem 2.24.
In the general case of a measurable map T : X → X on a measurable space (X,B), we
will see that

m is ergodic ⇐⇒ lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
X

f dm , m-a.e. x and all f ∈ L1(X,B,m) .

(2.10)
(This result is known as the Birkhoff ergodic theorem.) Therefore, the study of ergodic
measures is at the heart of understanding limits of time averages, and a little patience is
warranted.

There are several equivalent characterizations of ergodicity, including the following:

Theorem 2.44. A measure m ∈ PT is ergodic if and only if one of the following conditions
is satisfied:

(1) If A ∈ B is invariant, then m(A) ∈ {0, 1}.
(2) If A ∈ B is almost invariant, then m(A) ∈ {0, 1}.
(3) If f : X → R is invariant, then f is constant almost everywhere.
(4) If f : X → R is almost invariant, then f is constant almost everywhere.
(5) For any A ∈ B with m(A) > 0, we have m(∪∞i=1T

−iA) = 1.
(6) For any A,B ∈ B with m(A) > 0 and m(B) > 0, there exists i ≥ 1 such that

m(T−iA ∩B) > 0.

Before proving Theorem 2.44, let us make some remarks.

Equivalently, the field R can be replaced with C. Moreover, the class of measurable
functions f : X → R can be replaced by Lp(X,B,m) for any p ∈ [1,∞], in particular by
bounded measurable functions.
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Warning concerning (3): Earlier, we studied the ergodic theory of continuous maps and
called a continuous function f ∈ C(X) invariant if f ◦T = f on X. For that discussion it
was sufficient to restrict to f ∈ C(X). However, even if T : X → X is a continuous map
on a compact metric space, ergodicity does not follow even if every continuous invariant
function turns out to be constant.

Condition (5) has an important dynamical interpretation: If A is any set of positive
measure, then the trajectory of almost every point in X will eventually visit the set A. In
fact, it does so infinitely many times!

Exercise 2.45. Show that if m is ergodic and A ∈ B with m(A) > 0, then the trajectory
of almost every x ∈ X visits A infinitely often.

[Hint: Consider the sets ∪∞i=nT−iA, n ≥ 1.]

Thus, we may informally say that m is ergodic, if the trajectory of almost every point
in X will explore every region of positive measure in X — no matter how small. The
following exercise further illuminates this point.

Exercise 2.46. Suppose X is a compact metric space and that T : X → X is continuous
and uniquely ergodic. Assume also that the invariant measure m satisfies m(U) > 0 for
every nonempty open set U ⊂ X. Show that the trajectory of every point x ∈ X is dense.

[Hint: Use Theorem 2.24.]

Given the preceding discussion, it is not entirely unreasonable that in the ergodic case
the time averages

∑n−1
i=0 f(T i(x)) along the trajectory of a typical point will converge to

the space average
∫
X
f dm, as claimed (still without proof) in (2.10).

Proof of Theorem 2.44. (1) is the defining property of ergodicity, so it remains
to prove that conditions (1)–(6) are equivalent. Of course, (2) ⇒ (1) and (4)⇒ (3).

(1) ⇒ (2): If (1) holds and A ∈ B is almost invariant, then Lemma 2.34 guarantees
that there exists an invariant set A0 ∈ B with m(A∆A0) = 0. Since m(A0) = 0, also
m(A) = 0.

(3) ⇒ (4): This is a similar application of Lemma 2.34 as above.

(4) ⇒ (2): If A ∈ B is almost invariant, then 1A is almost invariant by Lemma 2.38
and by (4) constant almost everywhere. Hence m(A) =

∫
X

1A m ∈ {0, 1}.
(2) ⇒ (3): Let f be invariant. Every level set {f > t} is invariant by Lemma 2.38.

Hence, m({f > t}) ∈ {0, 1} for all t ∈ R. This implies (exercise!) that m({f = c}) = 1
for some c ∈ R.

Having proved that (1)–(4) are equivalent, we will now complete the proof by showing
that (2) ⇒ (5) ⇒ (6) ⇒ (1).

(2) ⇒ (5): Let A ∈ B and m(A) > 0, and denote B = ∪∞i=1T
−iA. This set is

almost invariant: T−1B ⊂ B and m(T−1B) = m(B) imply m(T−1B∆B) = 0. Thus,
m(B) ∈ {0, 1}. But m(B) ≥ m(T−1A) = m(A) > 0, so m(B) = 1.

(5)⇒ (6): LetA,B ∈ B be sets of positive measure. By assumption m(∪∞i=1T
−iA) = 1,

so m(∪∞i=1B ∩ T−iA) = m(B ∩ ∪∞i=1T
−iA) = m(B) > 0. Thus, m(B ∩ T−iA) > 0 at least

for one i ≥ 1.
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(6) ⇒ (1): Assume there exists an invariant set A ∈ B with 0 < m(A) < 1. Then
0 = m(A ∩ Ac) = m(T−iA ∩ Ac) for all i ≥ 1, which contradicts (6). �

Exercise 2.47. Recall the angle doubling map T : x 7→ 2x (mod 1) in Exercise 2.11.
Show that the Lebesgue measure is ergodic.

[Hint: Any L2 function f of period 1 has a unique representation as the Fourier series
f(x) =

∑
k∈Z f̂(k)e2πikx, where f̂(k) =

∫ 1

0
e−2πikxf(x) dx satisfies lim|k|→∞ f̂(k) = 0.]

The next theorem reveals the connection of ergodicity to the structure of the set PT
of all invariant measures.

Theorem 2.48. The set of ergodic measures is exactly the set ET of extreme points of PT .

For the proof of Theorem 2.48 we will need the next lemma. Recall that a measure µ is
absolutely continuous with respect to another measure m, if m(A) = 0 implies µ(A) = 0.
In that case µ has a density f = dµ

dm
∈ L1(X,B,m) with respect to m, meaning that

µ(A) =

∫
A

dµ =

∫
A

f dm , A ∈ B .

This is the Radon–Nikodym Theorem (Theorem A.6).

Lemma 2.49. Let (X,B) be a measurable space and T : X → X a measurable map.
If µ and m are invariant probability measures and µ is absolutely continuous with respect
to m, then the Radon–Nikodym density f = dµ

dm
is almost invariant (f = f ◦ T a.e.) with

respect to m.

Proof. We follow Michael Hochman’s lecture notes [7]. By Lemma 2.38 it suffices
to show that any level set A = {f > t}, t ∈ R, is almost invariant. First, we recall (2.9)
implies

m(A \ T−1A) = m(T−1A \ A) ,

because m is invariant. But also µ is invariant, so∫
A\T−1A

f dm = µ(A \ T−1A) = µ(T−1A \ A) =

∫
T−1A\A

f dm .

On A \ T−1A, f > t, while on T−1A \ A, f ≤ t. If m(A \ T−1A) = m(T−1A \ A) > 0,
we run into the contradiction t < t. Hence m(A \ T−1A) = m(T−1A \ A) = 0, and A is
almost invariant. �

Proof of Theorem 2.48. If m is an extreme point of PT , then it is ergodic by
Exercise 2.36. In the other direction, let m be ergodic. Suppose there exist two mea-
sures µ, ν ∈ PT and a number t ∈ (0, 1) such that m = (1 − t)µ + tν. Then µ (and ν)
is absolutely continuous with respect to m, because µ(A) = 0 if m(A) = 0. It follows
that it has a Radon-Nikodym density f = dµ

dm
∈ L1(X,B,m), which by Lemma 2.49 is

almost invariant with respect to m. Since m is ergodic, f is constant almost everywhere
by Theorem 2.44. Since f ≥ 0 and

∫
X
f dm = ν(X) = 1, this constant must be 1. But

this means that µ = m, and further that m is an extreme point of PT . �

The next corollary further establishes the role of ergodic measures as the building
blocks of other invariant measures. Informally, it states that two distinct ergodic measures
“live on disjoint subsets”.
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Corollary 2.50. Let m1,m2 ∈ ET be two ergodic probability measures. Then they either
coincide or are mutually singular. In other words, either m1 = m2 or there exists A ∈ B
such that m1(A) = 1 and m2(A) = 0.

Exercise 2.51. Prove Corollary 2.50 with the aid of Theorem 2.48.

[Hint: Consider the measure m = 1
2
m1 + 1

2
m2.]

6. Ergodic decomposition: a (very) brief overview

In the case of continuous transformations on a compact metric space, we were able to
conclude that any invariant measure m ∈ PT can be expressed as a barycenter

m =

∫
ET
µ dλ(µ) . (2.11)

of the extreme points of PT , i.e., the ergodic measures; see Theorem 2.28. In particular,
since PT is nonempty, it was concluded that ET is nonempty. The reasoning was based
on the observations that T∗ : P → P is a continuous map, and that PT is a convex and
compact subset of P in the weak topology of Borel measures.

For a general measurable transformation on a measurable space we also know that PT is
convex — but perhaps empty — and its extreme points are precisely the ergodic measures.
As discussed in Section 5, it is tempting to think that a representation of an invariant
measure similar to (2.11) exists. However, we can no longer argue that T∗ is continuous,
nor that PT is compact. In order to deal with this, we have to impose a mild assumption,
namely that the measurable space (X,B) be a standard Borel space:

Definition 2.52. A topological space X is called a Polish space, if it is separable and
metrizable with a complete metric. The measurable space (X,B), where B is the Borel
sigma-algebra, is then called a standard Borel space. If, moreover, m is a probability
measure on B, the probability space (X,B,m) is called a standard probability space.

Many ergodic theory books choose to work with Lebesgue spaces instead. These are
isomorphic to completions of standard probability spaces, so there is not a big differ-
ence between the two. The nuisance with a Lebesgue space is that the completion of
a sigma-algebra depends on the measure, while the Borel sigma-algebra does not. Only
pathological probability spaces fail to be standard (or completions thereof). Neverthe-
less, every standard probability space with no atoms8 is isomorphic to the unit interval
equipped with the Borel sigma-algebra and the Lebesgue measure!

The result sought for is the one below. We will not provide the proof, which can be
found, for instance, in the lecture notes [7,15].

Theorem 2.53 (Ergodic decomposition on a standard Borel space). Let (X,B) be a
standard Borel space and T : X → X a measurable transformation. Given any m ∈ PT ,
there exists a family {mx ∈ ET : x ∈ X} of ergodic Borel probability measures such that
the map x 7→ mx(A) is Borel measurable for all A ∈ B and

m =

∫
X

mx dm(x) .

8A set A ∈ B with m(A) > 0 is called an atom if there exists no measurable subset B ⊂ A such that
0 < m(B) < m(A). In a standard probability space, an atom consists of a single point of positive measure
and a set of measure zero. In any probability space, there can be at most countably many atoms.
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The displayed formula, called the ergodic decomposition of m, is just shorthand no-
tation for m(A) =

∫
X

mx(A) dm(x), A ∈ A . Equivalently,
∫
X
f dm =

∫
X

(∫
X
f dmx

)
dm(x)

for all f ∈ L1(X,B,m).

The intuition regarding the ergodic decompositions is that the set X admits a par-
tition ε into “minimal invariant sets” — the ergodic components — which is in general
uncountable. If εx denotes the partition element containing x ∈ X, then mx is the con-
ditional measure of m on εx. The latter is a Borel probability measure on X which is
supported on εx, mx(εx) = 1, although in general m(εx) = 0. The existence of such a
system of conditional measures calls for the assumption that the probability space be
standard.

Example 2.54. In Exercise 2.29 the trivial example of the identity map on the inter-
val [0, 1] was considered. It was determined that an arbitrary measure m, which is of course
invariant, has the representation m =

∫
[0,1]

δx dm(x), where the point masses δx are pre-
cisely the ergodic measures. This is an example of an ergodic decomposition with mx = δx;
the ergodic components are just the singletons {x}, x ∈ [0, 1].

From Exercise 2.42 we get a similar ergodic decomposition for rational rotations of
the circle, in which case mx is the measure 1

q
(δx + δT (x) + · · · + δT q−1(x)); the ergodic

components are the periodic trajectories {x, T (x), . . . , T q−1(x)}, x ∈ S1.





CHAPTER 3

Recurrence and ergodicity

In this chapter we continue the study of ergodicity and time averges, with the final
goal of proving (2.10).

Recall that ergodicity can be stated as follows, in terms of visits to sets: Given any
set A ∈ B of positive measure, m(A) > 0, the trajectory of almost every point x ∈ X
will eventually visit A (infinitely often). If m is not ergodic, then all bets are off. In
particular, there exists an invariant set B ∈ B with 0 < m(B) < 1, so the the trajectory
of any x ∈ Bc will never visit B: T i(x) ∈ Bc for all i ≥ 0. One may nevertheless wonder
whether the trajectory of a point x in a given set A will eventually return to the same
set. Such points are called recurrent with respect to the set A. The question of
recurrence is addressed next.

1. Recurrence theorems of Poincaré and Kac

In this section we study the typicality of recurrent points: If (X,B,m, T ) is a probability-
preserving transformation and A ∈ B is a given set, how typical is it that the trajectory
of a randomly chosen point x ∈ A will eventually return to A, meaning that T i(x) ∈ A for
some i ≥ 1? The answer is astounding: it happens almost surely, infinitely many times,
without any additional assumptions!

Theorem 3.1 (Poincaré recurrence theorem). Suppose (X,B,m, T ) is a ppt. Given
A ∈ B, let B = {x ∈ A : T i(x) ∈ A for infinitely many i ≥ 1}. Then B ∈ B and

m(B) = m(A) .

The reader is invited to compare the result with Exercise 2.45, and to note that
ergodicity is not required in the Poincaré recurrence theorem.

Proof of Theorem 3.1. First note that we can write B = A ∩ ∩∞n=0 ∪∞i=n T−iA,
so B is a measurable set. Define An = ∪∞i=nT−iA ∈ B, n ≥ 0. Then A0 ⊃ A1 ⊃ · · · and

A = A ∩ A0 ⊃ A ∩ A1 ⊃ · · · ⊃ ∩∞n=0A ∩ An = B .

In particular, we obtain m(A ∩An) ↓ m(B) as n→∞. To complete the proof, it suffices
to show that m(A ∩ An) = m(A ∩ A0) for all n. Since An = T−nA0 and m is invariant,
m(An) = m(A0). This implies m(A ∩ An) = m(A ∩ A0), because An ⊂ A0. �

Despite the short proof, the Poincaré’s theorem is powerful and very useful, as it
applies to all probability-preserving transformation.

Example 3.2. Let T : S1 → S1 : x 7→ x+α (mod 1) be a rotation of the circle and A ⊂ S1

a Cantor set of positive Lebesgue measure. Since the Lebesgue measure is invariant, the
Poincaré recurrence theorem guarantees that, for almost every x ∈ A, the rotated point
T i(x) is in the Cantor set A for infinitely many i ≥ 1. Without any assumption on α

31
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and the structure of A, this is not immediately obvious; although for an irrational α the
trajectories are dense, whereby they visit any interval, a Cantor set does not contain any
intervals.

Given a set A ∈ B with m(A) > 0, define the (first positive) hitting time

nA(x) = inf{n ≥ 1 : T n(x) ∈ A}, x ∈ X,
with the convention that inf ∅ =∞.

The Poincaré recurrence theorem guarantees that nA(x) <∞ for almost every x ∈ A.
On the other hand, if T is ergodic, then m(∪i≥1T

−iA) = 1 by Theorem 2.44, so nA(x) <∞
for almost every x ∈ X. (Note that ∪i≥1T

−iA is the set of those points whose trajectories
visit A at least once: x ∈ ∪i≥1T

−iA⇔ x ∈ T−iA for some i ≥ 1, which means T i(x) ∈ A).
Poincaré’s recurrence theorem tells us only that the trajectory of almost every point

x ∈ A will eventually return to the set A — that is, T n(x) ∈ A — and it actually does
so infinitely often, but it does not yield any information about the frequency of these
returns. Provided that the map T is ergodic, such information can be obtained from the
following result:

Theorem 3.3 (Kac recurrence theorem). Suppose (X,B,m, T ) is an ergodic ppt. For
any A ∈ B with m(A) > 0 and any f ∈ L1(X,B,m) we have∫

X

f dm =

∫
A

nA−1∑
i=0

f ◦ T i dm .

We emphasize that nA is a function, so the number of terms in the sum is not constant.
Choosing the constant function f = 1, Theorem 3.3 leads to

∫
A
nA dm = 1, which can be

restated as a quantitative version of the Poincaré recurrence theorem:

Corollary 3.4. Suppose (X,B,m, T ) is an ergodic ppt and A ∈ B with m(A) > 0. Then
the expected return time is ∫

A

nA dmA =
1

m(A)
,

where mA denotes the conditional probability measure on A, that is, mA(B) = 1
m(A)

m(B ∩
A). In particular, the expected return time is finite.

The finiteness of
∫
A
nA dmA is by itself a stronger result than the Poincaré recurrence

theorem. (Of course ergodicity is assumed here unlike in Poincaré’s theorem.) For exam-
ple, if the set A occupies 1% of the state space X, then on average it takes 100 iterations
of T before the trajectory of a typical point x ∈ A returns to A.

Example 3.5. To continue Example 3.2, assume that α is irrational, so the Lebesgue
measure m is ergodic by Exercise 2.26. By the Kac recurrence theorem, one may expect
that it takes 1

m(A)
rotations before the trajectory of a point returns to the Cantor set.

There are various ways of proving Kac’s theorem, of which we now present only one,
following Omri Sarig’s lecture notes [15].

Proof of Theorem 3.3. We will first assume that f is bounded and nonnegative,
as is common in measure-theoretic proofs, and finally extend to the general case.
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Let us make the following observation: Denoting

1(nA > n) = 1{x∈X :nA(x)>n} = 1T−nAc∩···∩T−1Ac

for convenience, we have for all n ≥ 0 that∫
X

1(nA > n) f ◦ T n dm =

∫
A

1(nA > n) f ◦ T n dm +

∫
Ac

1(nA > n) f ◦ T n dm .

The nuisance is that the second integral on the right side is over Ac; the idea of the
proof is to recursively express it as a sum of integrals over A. By basic identities such as
1B ◦ T = 1T−1B and by the invariance of m, we first see that∫

Ac

1(nA > n) f ◦ T n dm =

∫
X

1Ac1T−nAc∩···∩T−1Ac f ◦ T n dm

=

∫
X

1T−nAc∩···∩T−1Ac∩Ac f ◦ T n dm

=

∫
X

(1T−nAc∩···∩T−1Ac∩Ac f ◦ T n) ◦ T dm

=

∫
X

1T−n−1Ac∩···∩T−1Ac f ◦ T n+1 dm

=

∫
X

1(nA > n+ 1) f ◦ T n+1 dm .

This leads to the recursion formula∫
X

1(nA > n) f ◦ T n dm =

∫
A

1(nA > n) f ◦ T n dm +

∫
X

1(nA > n+ 1) f ◦ T n+1 dm

for all n ≥ 0. Since 1(nA > 0) = 1 and T 0 = idX , the recursion formula yields∫
X

f dm =

∫
A

N−1∑
n=0

1(nA > n) f ◦ T n dm +

∫
X

1(nA > N) f ◦ TN dm , N ≥ 0 . (3.1)

Now, let us take the limit N →∞ in (3.1). To that end, note that∣∣∣∣∫
X

f ◦ 1(nA > N)TN dm

∣∣∣∣ ≤ ‖f‖∞m(nA > N)→ 0 ,

because nA < ∞ for almost every x ∈ X by ergodicity (as pointed out above), which
implies1 limN→∞m(nA > N) = 0. On the other hand,

∑N−1
n=0 f ◦T n 1(nA > n) is increasing

in N , so the monotone convergence theorem and some rearranging of nonnegative series
yield∫

X

f dm =

∫
A

∞∑
n=0

1(nA > n) f ◦ T n dm =

∫
A

∞∑
n=0

∞∑
j=n+1

1(nA = j) f ◦ T n dm

=

∫
A

∞∑
j=1

j−1∑
n=0

1(nA = j) f ◦ T n dm =

∫
A

∞∑
j=1

1(nA = j)

nA−1∑
n=0

f ◦ T n dm .

Here
∑∞

j=1 1(nA = j) = 1(nA > 0) = 1, so the proof is complete for bounded nonnegative
functions f . A nonnegative integrable function is the limit of an increasing sequence

1Note that the sequence is decreasing, {nA > N + 1} ⊂ {nA > N}, so that limN→∞m(nA > N) =
m(∩N≥0{nA > N}) = m(nA =∞) = 0.
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of bounded nonnegative functions, so the result extends to that case by the monotone
convergence theorem. The general case of an integrable function is proved by splitting
the function into its positive and negative part. �

2. Preliminaries: Conditional expectation

Let (X,B,m) be a probability space. A sub-sigma-algebra is a family A ⊂ B
which itself is a sigma-algebra. For example, the trivial sigma-algebra

N = {∅, X}
is a sub-sigma-algebra of every sigma-algebra on X. Recall from basic measure theory
that, given any f ∈ L1(X,B,m), the set function defined by

µf (A) =

∫
A

f dm , A ∈ A , (3.2)

is a finite complex measure on (X,A ). Let it be emphasized that the domain of definition
is intentionally restricted to the sub-sigma-algebra A . What is more, µf is absolutely
continuous with respect to m, which can also be viewed as a measure on (X,A ). These
simple observations have a powerful conclusion. Namely, by the Radon–Nikodym theorem
(Theorem A.6), µf has a density hf ∈ L1(X,A ,m) with respect to m, meaning that

µf (A) =

∫
A

hf dm , A ∈ A . (3.3)

Moreover, hf is unique in the sense that any other candidate must agree with it almost
everywhere. This is a nontrivial conclusion; there is the important distinction between
(3.2) and (3.3) that the function f in general is not A -measurable, so f 6= hf .

Definition 3.6. Let (X,B,m) be a probability space, A a sub-sigma-algebra and f ∈
L1(X,B,m). A function hf is called the conditional expectation of f given A if

(1) hf is A -measurable, and
(2) for all A ∈ A , ∫

A

f dm =

∫
A

hf dm . (3.4)

We then denote
hf = E(f |A ) .

It can be checked that the preceding conditions imply hf ∈ L1(X,A ,m). By the
Radon–Nikodym discussion above, hf exists and is unique in the L1 sense. Let us also
point out that the second condition holds if and only if∫

X

fg dm =

∫
X

E(f |A ) g dm

for all bounded A -measurable functions g. Note that the functions f and E(f |A ) have
the same average (or expectation):∫

X

f dm =

∫
X

E(f |A ) dm .

It should be emphasized that E(f |A ) is a function. It also depends on the measure m, but
the dependence is left implicit when there is no danger of confusion about the underlying
measure.
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Before discussing the meaning of the construction, let us present some standard facts
about conditional expectation, similar to those of ordinary expectation. The proofs, which
are straightforward but which we omit, can be found in probability theory textbooks such
as [4,18].

Theorem 3.7. Let (X,B,m) be a probability space and A be a sub-sigma-algebra.

(1) (Linearity) The map L1(X,B,m)→ L1(X,A ,m) : f 7→ E(f |A ) is linear.
(2) (Positivity) If 0 ≤ f ∈ L1(X,B,m), then

E(f |A ) ≥ 0 .

(3) (Monotone convergence) Let fn, f ∈ L1(X,B,m) be such that 0 ≤ fn ↑ f . Then

E(fn|A ) ↑ E(f |A ) almost everywhere.

(4) (Jensen inequality) Let f ∈ L1(X,B,m) be real valued and φ : R → R be a
convex Borel measurable function such that φ ◦ f ∈ L1(X,B,m). Then

φ ◦ E(f |A ) ≤ E(φ ◦ f |A )

The Jensen inequality has a particularly important application: If p ∈ [1,∞) and
f ∈ Lp(X,B,m), then E(f |A ) ∈ Lp(X,A ,m) because

‖E(f |A )‖pp =

∫
X

|E(f |A )|p dm ≤
∫
X

E(|f |p|A ) dm =

∫
X

|f |p dm = ‖f‖pp .

Likewise, for f ∈ L∞(X,B,m),

‖E(f |A )‖∞ ≤ E(‖f‖∞|A ) = ‖f‖∞.
Briefly, the map

Lp(X,B,m)→ Lp(X,A ,m) : f 7→ E(f |A )

is a linear positive contraction for any p ∈ [1,∞]. As we will see shortly, it is also a
projection, meaning that E(E(f |A )|A ) = E(f |A ).

In elementary probability theory, the conditional expectation of f ∈ L1(X,B,m) given
a set A ∈ B of positive measure is defined to be E(f |A) = 1

m(A)

∫
A
f dm. The notion of

conditional expectation given a sub-sigma-algebra just defined is a broad generalization
of this elementary notion:

Exercise 3.8. Let {A1, . . . , An}, n ∈ N ∪ {∞}, be a finite or countable partition of X
into measurable sets Ai with m(Ai) > 0. That is, ∪ni=1Ai = X and Ai ∩ Aj = ∅ if i 6= j.
Let A = σ({A1, . . . , An}). Show that, for almost every x,

E(f |A )(x) =
1

m(Ai)

∫
Ai

f dm

where Ai is the element of the partition containing x. Note that the conclusion does not
change if the definition of a partition is relaxed to m(X \∪ni=1Ai) = 0 and m(Ai∩Aj) = 0
for i 6= j.

Example 3.9. Consider the interval [0, 1). For a fixed n ≥ 1, the partition {[2−n(i −
1), 2−ni) : 1 ≤ i ≤ 2n} generates a sub-sigma-algebra An ⊂ B of the Borel sigma-algebra.
We have

E(f |An)(x) =
1

2−n

∫ 2−ni

2−n(i−1)

f(y) dy
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for 2−n(i− 1) ≤ x < 2−ni. Then E(f |An) is constant on each partition element, with the
constant being the average of f on that element. In a sense, E(f |An) is the function that
best approximates f while being constant on partition elements.

In general, it is very useful to think of E(f |A ) as the best A -measurable approxi-
mation of a given f ∈ L1(X,B,m); the bigger the sub-sigma-algebra A the better the
approximation. The following facts are also standard and consistent with the approxima-
tion idea. The proofs can be found in the textbooks [4,18], but the reader is encouraged
to give them a try.

Theorem 3.10. Let (X,B,m) be a probability space.

(1) If A1 ⊂ A2 are two sub-sigma-algebras and f ∈ L1(X,B,m), then

E(E(f |A1)|A2) = E(f |A1) and E(E(f |A2)|A1) = E(f |A1)

(2) If A is a sub-sigma-algebra, f is A -measurable and g, fg ∈ L1(X,B,m), then

E(fg|A ) = f E(g|A ) .

(3) If f ∈ L1(X,B,m), then

E(f |N ) =

∫
X

f dm and E(f |B) = f ,

where N = {∅, X} is the trivial sigma-algebra.
(4) In L2 the conditional expectation has a special role: If A is a sub-sigma-algebra,

then
L2(X,B,m)→ L2(X,A ,m) : f 7→ E(f |A )

is the orthogonal projection onto the subspace L2(X,A ,m) of L2(X,B,m).

The first fact implies as a special case the earlier claim that the conditional ex-
pectation is a projection. The proof of the last fact is based on the splitting f =
f − E(f |A ) + E(f |A ), where f − E(f |A ) and E(f |A ) are orthogonal by the second
fact. In particular, given any f ∈ L2(X,B,m), the conditional expectation E(f |A ) is
the unique g ∈ L2(X,A ,m) which minimizes the distance ‖f − g‖2 — it is the best
A -measurable approximation of f .

Before leaving the general topic of sub-sigma-algebras and conditional expectation, we
make a few simple observations that will serve us in the future.

If T : X → X is a measurable map and A is a sub-sigma-algebra of B, we define

T−nA = {T−nA : A ∈ A }
for each n ≥ 1.

Exercise 3.11. Show that each T−nA is a sub-sigma-algebra of B.

Given two sub-sigma-algebras A1,A2 ⊂ B, the meaning of an expression such as
A1 ⊂ A2 is the usual set-theoretic one. On a probability space (X,B,m) sets of measure
zero do not usually matter. For this reason, we write

A1 ⊂ A2 (mod m)

if for every A1 ∈ A1 there exists A2 ∈ A2 such that m(A1 ∆A2) = 0. We also write

A1 = A2 (mod m)
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if A1 ⊂ A2 (mod m) and A2 ⊂ A1 (mod m). For example, A = N (mod m) means
that the sub-sigma-algebra A ⊂ B contains only sets of measure 0 or 1. The next lemma
shows that differences (mod m) do not affect the conditional expectations. We present
the proof for completeness, but it can be skipped.

Lemma 3.12. Let A1 = A2 (mod m) be two sub-sigma-algebras. For any f ∈ L1(X,B,m),

E(f |A1) = E(f |A2) almost everywhere.

Proof. Denote gi = E(f |Ai). This is the unique element (equivalence class of func-
tions) in L1(X,Ai,m) ⊂ L1(X,B,m) such that∫

X

f 1A dm =

∫
X

gi 1A dm , A ∈ Ai .

We claim that g1 = g2 a.e. Because A1 = A2 (mod m), we obtain∫
X

f 1A dm =

∫
X

gi 1A dm , A ∈ A(A1 ∪A2) ,

where A(A1 ∪A2) is the algebra generated by A1 ∪A2. Denote by Mi the collection of
all A ∈ B such that ∫

X

f 1A dm =

∫
X

gi 1A dm .

This is a monotone class, and we have just checked that A(A1 ∪ A2) ⊂ Mi. By the
monotone class theorem, σ(A1 ∪A2) ⊂Mi, meaning∫

X

f 1A dm =

∫
X

gi 1A dm , A ∈ σ(A1 ∪A2) .

Because gi ∈ L1(X, σ(A1 ∪A2),m), we have gi = E(f |σ(A1 ∪A2)), i = 1, 2. �

Let (X,B,m, T ) be a probability-preserving transformation. We denote by

I = {A ∈ B : m(A∆T−1A) = 0}
the family of almost invariant sets and by

I0 = {A ∈ B : A = T−1A}
the family of invariant sets.

Exercise 3.13. Prove the following:

(1) I and I0 are sub-sigma-algebras of B.
(2) I and I0 satisfy

I0 = T−1I0

and
I = T−1I = I0 (mod m) .

(3) m is ergodic if and only if I = I0 = N (mod m).
(4) A function is I0-measurable or I -measurable if and only if it is invariant or

almost invariant, respectively.

Exercise 3.14. Let (X,B,m, T ) be a probability-preserving transformation. Show that if
A is a sub-sigma-algebra and f ∈ L1(X,B,m), then

E(f |A ) ◦ T = E(f ◦ T |T−1A ) . (3.5)
(This identity is not true if m is not an invariant measure.)
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The identity in (3.5) may look slightly strange, but it is easy to remember: We may
think of T−1A as the future sub-sigma-algebra (it consists of the sets T−1A, A ∈ A ,
involving the future event T (x) ∈ A) and of g(T (x)) as the future value of a function g.
Thus, (3.5) states that the future value of the conditional expectation E(f |A ) coincides
with the conditional expectation of the future value of f given the future sub-sigma-
algebra.

An application of the observations above is that

E(f ◦ T |I ) = E(f |I ) = E(f |I ) ◦ T
holds almost everywhere, for all f ∈ L1(X,B,m).

3. Von Neumann’s mean ergodic theorem

We return to the convergence of time averages. The next result is a historical landmark
in ergodic theory. In fact, von Neumann considered the theorem one of his three greatest
achievements. His original proof was based on the spectral theory on Hilbert spaces
developed by Stone and him. The much simpler proof given here follows the presentation
of Parry’s book [9], which gives credit for the simplification to Hopf. It avoids spectral
theory, but linear isometries on a Hilbert space will be studied. Before we formulate von
Neumann’s theorem, let us elucidate how linear operators on Hilbert spaces arise in the
study of time averages.

Definition 3.15. Let (X,B) be a measurable space and T a measurable map. The linear
operator

Uf = f ◦ T
acting on the vector space of measurable functions is called the Koopman operator.

Definition 3.16. A linear operator L : V → V on a normed space V is an isometry if

‖Lv‖ = ‖v‖ , v ∈ V .

Exercise 3.17. Prove that the Koopman operator satisfies ‖Uf‖p = ‖f‖p for all f ∈
Lp(X,B,m) and all p ∈ [1,∞). What can be said about the case of L∞(X,B,m)?

Theorem 3.18 (Von Neumann ergodic theorem). Let U be an isometry on a Hilbert
space H. Denote by I = {x ∈ H : Ux = x} the subspace of U-invariant vectors, and
let P : H → I be the orthogonal projection onto I. Then

lim
n→∞

1

n

n−1∑
i=0

U ix = Px , x ∈ H .

In particular, if (X,B,m, T ) is a probability-preserving transformation and I = {A ∈
B : m(T−1A∆A) = 0} is the sub-sigma-algebra of almost invariant sets, then

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = E(f |I ) , f ∈ L2(X,B,m) ,

where convergence takes place in L2(X,B,m). If m is ergodic, then

E(f |I ) =

∫
X

f dm

almost everywhere.
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We remark that any f ∈ L1(X,B,m) has the same average as E(f |I ):∫
X

E(f |I ) dm =

∫
X

f dm (3.6)

according to the properties of conditional expectation. In the ergodic case E(f |I ) =∫
X
f dm almost everywhere, because the function E(f |I ) is almost invariant and, as

such, constant almost everywhere.

Note that the convergence in the second part of the theorem takes place in the norm
‖·‖2 = ‖·‖L2(X,B,m). In other words, limn→∞ ‖ 1

n

∑n−1
i=0 f ◦T i−E(f |I )‖2 = 0. This is both

satisfactory and unsatisfactory; on the one hand, convergence in norm is a strong notion of
convergence, but on the other hand, in ergodic theory one would also like to have almost
sure convergence. In the next section we will prove Birkhoff’s almost sure ergodic theorem,
which guarantees almost sure convergence for all f in the larger space L1(X,B,m), as well
as convergence in the weaker L1 norm. There is a version of von Neumann’s theorem for
measure-preserving transformations applicable to any of the Banach spaces Lp(X,B,m)
with p ∈ [1,∞), which guarantees that the time averages of an Lp function converge in
the corresponding norm ‖ · ‖p; see, e.g., [17]. Such a theorem can be proved as a corollary
of the L2 version or of Birkhoff’s theorem. Namely, the following equivalence among the
Lp spaces holds:

Exercise 3.19. Suppose there exists p ∈ [1,∞) such that

lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
i=0

f ◦ T i − E(f |I )

∥∥∥∥∥
p

= 0 , f ∈ Lp(X,B,m) .

Show that the same statement then holds in fact for all p ∈ [1,∞).

[Hint: A truncation argument works; given any M > 0, split f = f1{f≤M} + f1{f>M},
establish the corresponding result first for the bounded part, and then show that the un-
bounded part does not contribute in the limit M →∞.]

Recall that, according to Theorem 2.4, the time averages of f ∈ C(x) converge to
a continuous function f+ ∈ C(X) if and only if f ∈ I ⊕ B̄. There I was the subspace
of continuous invariant functions and B was the subspace of continuous coboundaries.
The proof of the von Neumann ergodic theorem we present is based on a similar splitting
H = I ⊕ B̄ of the Hilbert space with the following definitions:

Definition 3.20. Let H be a Hilbert space and U : H → H an isometry. An element
x ∈ H is called invariant if x = Ux. Thus

I = {x ∈ H : x = Ux}
is the (closed) subspace of all invariant elements.

An element x ∈ H is called a coboundary if there exists y ∈ H such that x = y−Uy.
Thus

B = {y − Uy : y ∈ H}
is the (generally not closed) subspace of all coboundaries.

A remark is in order. In the case where H = L2(X,B,m) and U is the Koopman
operator of a probability-preserving transformation, f ∈ I means that f = Uf = f ◦ T
holds in the almost sure sense of L2; that is, f is an almost invariant L2 function. Likewise
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f ∈ B means that there exists f ∈ L2(X,B,m) such that f = g−g◦T almost everywhere;
such functions are also called L2 coboundaries.

The following observation is at the heart of von Neumann’s theorem. The reader is
invited to compare it with Lemma 2.3, which was equally important for Theorem 2.4.

Lemma 3.21. Let H be a Hilbert space and U : H → H an isometry. Then

lim
n→∞

1

n

n−1∑
i=0

U ix =

{
x if x ∈ I,
0 if x ∈ B̄,

where the convergence takes place in the norm of the Hilbert space.

Exercise 3.22. Prove Lemma 3.21.

Thus, the proof of Theorem 3.18 amounts to showing that H = I ⊕⊥ B̄, where the
symbol ⊕⊥ means that I and B̄ are orthogonal complements, I = B̄⊥. We are ready to
enter the proof after recalling some elementary facts about isometries. Below, U∗ is the
adjoint of U , which is the continuous linear operator H → H satisfying

〈Ux, y〉 = 〈x, U∗y〉 , x, y ∈ H .

Lemma 3.23. Let H be a Hilbert space.

(1) An isometry U : H → H is one-to-one and continuous.
(2) A continuous linear operator U : H → H is an isometry if and only if

〈x, y〉 = 〈Ux, Uy〉 , x, y ∈ H .

(3) A continuous linear operator U : H → H is an isometry if and only if

U∗U = I .

(4) If U : H → H is an isometry, then

Ux = x ⇐⇒ U∗x = x .

Exercise 3.24. Prove Lemma 3.23.

[Hint: In (4) express ‖x− Ux‖2 in term of U∗.]

Proof of Theorem 3.18. Suppose first that H = I ⊕⊥ B̄ and that P : H → I
is the orthogonal projection onto I. Then Px = x for x ∈ I and Px = 0 for x ∈ B̄.
Lemma 3.21 then implies that limn→∞

1
n

∑n−1
i=0 U

ix = Px for all x ∈ H. It remains to
prove that H = I ⊕⊥ B̄.

B̄⊥ ⊂ I: If x ∈ B̄⊥, then 〈x, b〉 = 0 for any b ∈ B̄. In particular, 〈x, Uy − y〉 = 0 for
any y ∈ H, which implies 〈U∗x − x, y〉 = 0 or U∗x = x. Equivalently, Ux = x, meaning
x ∈ I.

I ⊂ B̄⊥: If x ∈ I, then U∗x = x, which implies 〈x, Uy − y〉 = 〈U∗x − x, y〉 = 0 for
any y ∈ H. Thus, 〈x, b〉 for any b ∈ B. This actually holds for any b ∈ B̄: if bn ∈ B
converges in H to b ∈ B̄, then 0 = 〈x, bn〉 → 〈x, b〉. Hence, x ⊥ B̄.

In the case of the probability-preserving transformation, the Hilbert space is H =
L2(X,B,m) and the isometry is U : H → H : Uf = f ◦ T . We only need a few
remarks. Firstly, the subspace I ⊂ L2(X,B,m) of invariant elements is precisely the
subspace of almost invariant L2 functions. Moreover, f is almost invariant if and only
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if f is I -measurable, so I = L2(X,I ,m). The orthogonal projection P onto I is thus
E( · |I ) by Theorem 3.10. In the ergodic case, E(f |I ) =

∫
X
f dm as explained below the

theorem. �

4. Birkhoff’s almost sure ergodic theorem

In this section we introduce the most fundamental result in ergodic theory, due to
George Birkhoff, which can be viewed as an almost sure version of von Neumann’s ergodic
theorem. The result has several names in the literature, such as the pointwise ergodic
theorem, almost sure ergodic theorem and individual ergodic theorem. We first state the
theorem,

Theorem 3.25 (Birkhoff ergodic theorem). Let (X,B,m, T ) be a probability-preserving
transformation and I = {A ∈ B : m(T−1A∆A) = 0} the sub-sigma-algebra of almost
invariant sets. Then, for all f ∈ L1(X,B,m),

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = E(f |I ) ,

where the convergence takes place both almost surely and in the L1 norm. If m is ergodic,
then

E(f |I ) =

∫
X

f dm

almost everywhere.

Recall from (3.6) that the limit E(f |I ) satisfies
∫
X

E(f |I ) dm =
∫
X
f dm, and that

in the ergodic case E(f |I ) =
∫
X
f dm almost everywhere.

From Birkhoff’s theorem, we get immediately two additional characterizations of er-
godicity, the first of which was promised in (2.10).

Theorem 3.26. Let (X,B) be a measurable space and T : X → X a measurable map.
A measure m ∈ PT is ergodic if and only if one of the following equivalent conditions is
satisfied:

(1) For all f ∈ L1(X,B,m) and almost every x ∈ X,

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
X

f dm .

(2) For all A ∈ B and almost every x ∈ X,

lim
n→∞

1

n

n−1∑
i=0

1A(T i(x)) = m(A) .

In other words, ergodicity means precisely that the time averages converge to the space
average almost surely. Condition (2) has an interesting dynamical interpretation as well:
it states that the trajectory of a typical point visits every region of the state space more or
less regularly, in such a way that the asymptotic frequency of visits is proportional to the
measure of the region. Recall that we already knew that there are infinitely many visits
by Exercise 2.45, but had no quantitative information about the times of visits. Thus,
much like the Kac recurrence theorem (or Corollary 3.4) quantifies the time of first return



42 3. RECURRENCE AND ERGODICITY

to a set (starting from a point in the same set), the Birkhoff ergodic theorem quantifies
the times of the infinitely many visits to a set (starting from a point in X).

Proof of Theorem 3.26. Ergodicity implies (1), which implies (2). If A ∈ B is an
invariant set, then 1A is an invariant function, 1A = 1A ◦ T i for all i ≥ 1, and (2) implies
that 1A(x) = m(A) for almost every x ∈ X. This implies m(A) ∈ {0, 1}, so (2) implies
ergodicity. �

The proof of Theorem 3.25 is somewhat more involved than that of the von Neumann
ergodic theorem: Birkhoff’s theorem applies to the larger class L1(X,B,m) of functions f ,
and also gives information about the convergence of the time averages 1

n

∑n−1
i=0 f(T i(x)) for

individual points x ∈ X. Nevertheless, the particular proof we present — which follows
Garsia [5,6] as in Parry [9] — proceeds along very similar lines to the above proof of von
Neumann’s theorem. It is based on the splitting L1(X,B,m) = I ⊕ B̄ with the following
definitions:

Definition 3.27. Let (X,B,m, T ) be a probability-preserving transformation. Then

I = {f ∈ L1(X,B,m) : f = f ◦ T}
is the (closed) subspace of L1(X,B,m) of all almost invariant functions.

A function f ∈ L1(X,B,m) is called an L1 coboundary if there exists g ∈ L1(X,B,m)
such that f = g − g ◦ T almost everywhere. Thus

B = {g − g ◦ T : g ∈ L1(X,B,m)}
is the (generally not closed) subspace of all L1 coboundaries.

Analogously to Lemma 3.21, we have the following Lemma:

Lemma 3.28. In the above setting,

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i =

{
f if f ∈ I,
0 if f ∈ B̄,

where the convergence takes place in the L1 norm, and the equality holds almost every-
where (that is, in the sense of L1). In the case of I, the convergence is also almost sure.

Exercise 3.29. Prove Lemma 3.28.

It will indeed turn out L1(X,B,m) = I ⊕ B̄, which is an important part of the proof.
Then the preceding lemma implies a convergence result for all functions in this space.
But we can already see a missing element: we need almost sure convergence, also on B̄.
The problem is that a general f = g−g ◦T ∈ B, the function g is not a bounded function.
Let us give a name to the special case when g is bounded:

Definition 3.30. A measurable function f is called an L∞ coboundary if there exists
g ∈ L∞(X,B,m) such that f = g − g ◦ T almost everywhere. We write

B∞ = {g − g ◦ T : g ∈ L∞(X,B,m)} .

It is obvious that B∞ ⊂ B is a dense subspace of B̄ in the topology of L1(X,B,m):

B̄∞ = B̄ . (3.7)
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Exercise 3.31. Show that

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = 0 almost everywhere if f ∈ B∞ . (3.8)

Since L1(X,B,m) = I ⊕ B̄ = I ⊕ B̄∞, it would seem that we are almost done; we
just need to extend (3.8) to all of B̄∞ by closing the subspace B∞. However, the closure
in B̄∞ here is in the sense of L1, not L∞. To accomplish such an extension of the almost
sure convergence to all of B̄∞ (hence to all of L1(X,B,m)), we need a powerful tool —
the maximal ergodic theorem. We introduce it next, and finish the proof of the Birkhoff
ergodic theorem after that.

Here is a fun application of Birkhoff’s theorem:

Exercise 3.32. Let (X,B,m, T ) be a probability-preserving transformation. Show that,
for almost every x ∈ X and all f ∈ L1(X,B,m), limn→∞

1
n
f(T n(x)) = 0.

5. Maximal ergodic theorem

Theorem 3.33. 2 Let f ∈ L1
R(X,B,m). Denote Sk =

∑k−1
i=0 f ◦ T i, k ≥ 0, with the

convention that S0 = 0. Also denote Mn = max0≤k≤n Sk, n ≥ 0. Then∫
{Mn>0}

f dm ≥ 0 , n ≥ 0 ,

where {Mn > 0} = {x ∈ X : max0≤k≤n Sk(x) > 0}.

Observe that Mn ≥ 0 because S0 = 0. Accordingly, X = {Mn > 0} ∪ {Mn = 0}. Here
{Mn > 0} is the set of those points x ∈ X for which the time average 1

k

∑k−1
i=0 f(T i(x)) is

greater than 0 at least for one k ∈ [1, n]. By the maximal ergodic theorem, the conditional
mean of f on this set is positive. On the complement {Mn = 0}, f ≤ 0 because S1 = f .
Hence, conditioned on the event that the time average is at most 0 for all k ∈ [1, n], the
mean of f is nonpositive: ∫

{Mn=0}
f dm ≤ 0 , n ≥ 0 .

Thus the maximal ergodic theorem tells something rather nontrivial about the connection
between time and space averages.

Proof of Theorem 3.33. (Following Garsia [5].) We prove the result with the aid
of the Koopman operator Uf = f ◦ T . Note that it can be viewed as a linear operator
L1

R(X,B,m) → L1
R(X,B,m), and that Sk =

∑k−1
i=0 U

if . The proof is based on three
fundamental observations, the first of which is the trivial identity

f + USk = Sk+1 , (3.9)

while the second one is the bound

U

(
max

0≤k≤n
Sk

)
≥ max

0≤k≤n
USk . (3.10)

2In the proof the only property about the map (X,B,m, T ) used is that the Koopman operator
Uf = f ◦ T is a positive contraction. Hence, a similar result is true for any positive contraction U on
L1(X,B,m) with the definition of Sk taken to be Sk =

∑k−1
i=0 U

if .
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We save the proof of this bound for last and take it now for granted. The third fundamental
observation is that U is a positive contraction:

h ≥ 0⇒ Uh ≥ 0 and ‖Uh‖1 ≤ ‖h‖1 .

It follows from (3.9)–(3.10) that

f + UMn ≥ f + max
0≤k≤n

USk = max
0≤k≤n

(f + USk) = max
0≤k≤n

Sk+1 = max
1≤k≤n+1

Sk ≥ max
1≤k≤n

Sk .

If x ∈ {Mn > 0}, then max1≤k≤n Sk(x) = max0≤k≤n Sk(x) = Mn(x), because S0 = 0.
Therefore, we have shown that

f(x) + UMn(x) ≥Mn(x) , x ∈ {Mn > 0} .
This implies ∫

{Mn>0}
f dm ≥

∫
{Mn>0}

Mn − UMn dm .

The right side is nonnegative:∫
{Mn>0}

Mn − UMn dm =

∫
X

Mn − UMn dm ≥ 0 .

The first equality follows from the fact that Mn ≥ 0 (recall S0 = 0), so either Mn > 0
orMn = 0. In the second inequality we also used the fact that U is a positive contraction:

0 ≤ ‖Mn‖1 − ‖UMn‖1 =

∫
X

|Mn| − |UMn| dm =

∫
X

Mn − UMn dm .

It remains to prove (3.10). Given f, g ∈ L1
R(X,B,m), we have the decomposition

max(f, g) = (f − g)+ + g. This yields U(max(f, g)) = U((f − g)+) + Ug ≥ Ug, because
U is positive. Switching the roles of f and g, we also have U(max(f, g)) ≥ Uf , so
U(max(f, g)) ≥ max(Uf, Ug). The general case is proved by induction. �

We now present a straightforward corollary, which makes it more obvious how the
maximal ergodic theorem is relevant to the limit behavior of time averages.

Corollary 3.34. For all f ∈ L1(X,B,m) and λ > 0,

m

{
x ∈ X : lim sup

n→∞

∣∣∣∣∣ 1n
n−1∑
i=0

f(T i(x))

∣∣∣∣∣ > λ‖f‖1

}

≤ m

{
x ∈ X : sup

n≥1

∣∣∣∣∣ 1n
n−1∑
i=0

f(T i(x))

∣∣∣∣∣ > λ‖f‖1

}
≤ 1

λ
.

Proof. Only the last inequality requires a proof. If we can prove it for |f | in place
of f , then the result follows also for f , so it suffices to assume that f ≥ 0. This has the
advantage that all the absolute values disappear from the formulas. Let us now define
the sets

An =

{
x ∈ X : max

1≤k≤n

1

n

n−1∑
i=0

f(T i(x)) > λ‖f‖1

}
for each n ≥ 1. Then{

x ∈ X : sup
n≥1

1

n

n−1∑
i=0

f(T i(x)) > λ‖f‖1

}
=
⋃
n≥1

An .
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Defining the function g = f − λ‖f‖1, we have

An =

{
x ∈ X : max

1≤k≤n

1

n

n−1∑
i=0

(f(T i(x))− λ‖f‖1) > 0

}

=

{
x ∈ X : max

1≤k≤n

1

n

n−1∑
i=0

g(T i(x)) > 0

}
=

{
x ∈ X : max

0≤k≤n

n−1∑
i=0

g(T i(x)) > 0

}
.

By the maximal ergodic theorem,∫
An

g dm ≥ 0 so that m(An)λ‖f‖1 ≤
∫
An

f dm ≤ ‖f‖1 ,

which implies

m(An) ≤ 1

λ
, n ≥ 1 .

Because A1 ⊂ A2 ⊂ · · · , we get m(∪n≥1An) = supn≥1 m(An) ≤ 1
λ
, and the proof is

complete. �

We finish the section with the proof of Birkhoff’s theorem.

Proof of Theorem 3.25. Let us first show that L1(X,B,m) = I ⊕ B̄. To ac-
complish that — very similarly to the proofs of Theorems 3.18 and 2.4 — we define the
linear projection operator P : L1(X,B,m) → I : Pf = E(f |I ). Then L1(X,B,m) =
imP ⊕ kerP = I ⊕ kerP , and we need to establish kerP = B̄. Since ‖E(f |I )‖1 = ‖f‖1,
the operator P is continuous, so kerP is closed. Moreover, E(g − g ◦ T |I ) = E(g|I ) −
E(g ◦ T |I ) = E(g|I )− E(g|T−1I ) = 0, so B ⊂ kerP , which implies B̄ ⊂ kerP .

We proceed to show that kerP ⊂ B̄ with the aid of Lemma B.3, just as in the proof
of Theorem 2.4.3 Namely, it suffices to check that if L : L1(X,B,m)→ C is an arbitrary
continuous linear functional which vanishes on B̄ (in particular on B), then it also vanishes
on kerP .

Given a functional L : L1(X,B,m)→ C, by the representation theorem of continuous
linear functionals on L1 (Theorem B.10), there exists h ∈ L∞(X,B,m) such that Lf =∫
X
fh dm. If L vanishes on B, we have L(g−g◦T ) = 0 for all g ∈ L1(X,B,m). This means

that
∫
X
g ◦ Th dm =

∫
X
gh dm for all g ∈ L1(X,B,m). In particular,

∫
X
h ◦ Th dm =∫

X
h2 dm =

∫
X

(h ◦ T )2 dm, so
∫
X

(h ◦ T − h)2 dm = 0, which means that h is almost
invariant. Thus, h is I -measurable. Using the last fact, we have Lf =

∫
X
fh dm =∫

X
E(f |I )h dm. If f ∈ kerP , then E(f |I ) = 0, so Lf = 0. Hence, kerP ⊂ B̄ and

L1(X,B,m) = I ⊕ B̄.

In view of Lemma 3.28, equation (3.7) and Exercise 3.31, it remains to prove that (3.8)
holds on B̄∞, not just on B∞. To this end, we apply Corollary 3.34. Let us denote

R(x; f) = lim sup
n→∞

∣∣∣∣∣ 1n
n−1∑
i=0

f(T i(x))

∣∣∣∣∣ .
3In the proof of von Neumann’s theorem, showing H = I ⊕ B̄ was done in a slightly more direct

fashion, because it was possible to take advantage of the inner product structure of H.
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Since R(x; f − f∞) = R(x; f) for all f∞ ∈ B∞, Corollary 3.34 guarantees that, for all
λ > 0, f ∈ B̄∞ and f∞ ∈ B∞, we have

m{x ∈ X : R(x; f) ≥ λ‖f − f∞‖1} ≤
1

λ
.

Now, given such f and λ, pick f∞ ∈ B∞ in such a way that ‖f − f∞‖1 ≤ 1
λ2 . Then

{x ∈ X : R(x; f) ≥ 1
λ
} ⊂ {x ∈ X : R(x; f) ≥ λ‖f − f∞‖1}, so that

m

{
x ∈ X : R(x; f) ≥ 1

λ

}
≤ 1

λ
.

It is obvious that the set on the left side increases with λ and {x ∈ X : R(x; f) > 0} =
∪λ>0

{
x ∈ X : R(x; f) ≥ 1

λ

}
. Hence,

m {x ∈ X : R(x; f) > 0} = 0 , f ∈ B̄∞ = B̄ ,

which is what was to be shown. �



CHAPTER 4

Mixing

In this chapter we will introduce several so-called mixing properties of measure-
preserving transformations, all of which are stronger than ergodicity.

1. Weak and strong mixing

To motivate the subject, it is very illuminating to present two more characterizations
of ergodicity.
Theorem 4.1. Let (X,B) be a measurable space and T : X → X a measurable map.
A measure m ∈ PT is ergodic if and only if one of the following equivalent conditions is
satisfied:

(1) For all f, g ∈ L2(X,B,m),

lim
n→∞

1

n

n−1∑
i=0

∫
X

f ◦ T i ḡ dm =

∫
X

f dm

∫
X

ḡ dm . (4.1)

(2) For all A,B ∈ B,

lim
n→∞

1

n

n−1∑
i=0

m(T−iA ∩B) = m(A) m(B) ,

that is,

lim
n→∞

1

n

n−1∑
i=0

(
m(T−iA ∩B)−m(A) m(B)

)
= 0 . (4.2)

Given A,B ∈ B with m(B) > 0, we have 1
m(B)

m(T−iA ∩ B) = m(T−iA|B). Since
m(A) = m(T−nA), condition (4.2) thus has the following dynamical interpretation: given
that x is picked randomly in B according to the distribution m, the conditional probability
that T n(x) ∈ A converges in arithmetic mean to the measure of A — whatever the sets
A and B are.

Proof of Theorem 4.1. If (1) holds, we take f = 1A and g = 1B. Since 1A ◦ T =
1T−1A and 1T−1A1B = 1T−1A∩B, (2) follows. Assuming (2), let A be an invariant set
and B = Ac. Then 0 = m(A ∩ Ac) = m(A) m(Ac), which implies m(A) ∈ {0, 1}, so
m is ergodic. Finally, if m is ergodic and f ∈ L2(X,B,m), the von Neumann ergodic
theorem implies that limn→∞

1
n

∑n−1
i=0 f ◦ T i =

∫
X
f dm in the L2 norm. This implies

limn→∞〈 1
n

∑n−1
i=0 f ◦T i, g〉 = 〈

∫
X
f dm, g〉 =

∫
X
f dm

∫
X
ḡ dm for any g ∈ L2(X,B,m). �

It is natural to ask whether under some conditions the series in (4.2) might converge
absolutely, or whether the summand might even converge to zero without taking the
arithmetic mean. This leads to the following definitions:

47
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Definition 4.2. Let (X,B,m, T ) be a probability-preserving transformation. The mea-
sure m is called weakly mixing if

lim
n→∞

1

n

n−1∑
i=0

∣∣m(T−iA ∩B)−m(A) m(B)
∣∣ = 0 (4.3)

and mixing (or strongly mixing) if

lim
n→∞

m(T−nA ∩B) = m(A) m(B) (4.4)

for all A,B ∈ B.

Condition (4.4) is equivalent to limn→∞(m(T−nA∩B)−m(T−nA)m(B)) = 0, because
m(A) = m(T−nA). In probability theory, two events A,B ∈ B are called independent, if
m(A ∩ B) = m(A)m(B). When m(B) > 0, this is equivalent to m(A|B) = m(A). From
this point of view, mixing means that the events T−nA and B become asymptotically
independent, which has the following dynamical interpretation: given that x is picked
randomly in B according to the distribution m, the conditional probability that T n(x) ∈ A
converges to the measure of A. There are two points two be made. First, the choice of
the sets A and B does not matter for the conclusion. Second, the convergence is genuine,
in that taking an arithmetic mean first is not required unlike in the case with ergodicity.
While ergodicity means that trajectories starting from a given region B eventually (and
frequently) visit any other region A of the state space X, mixing means that a fraction
≈ m(B) of the trajectories are actually visiting B at any given instant after a sufficiently
long time has passed.

Example 4.3. Suppose we add some milk in a cup of coffee; say 1 part of milk in 4 parts
of coffee, bringing the milk concentration in the cup to 20%. Our experience tells us that
stirring the mixture with a spoon will eventually mix the milk in the coffee uniformly. That
is, the concentration of milk in any region in the mixture approaches 20%. We may model
the situation as follows: let X represent the liquid in the cup, B ⊂ X the region initially
holding all the milk, T : X → X the action of stirring the cup once with a spoon, and m
the natural measure of volume (which is invariant, because the liquid is incompressible).
Now, consider an arbitrary small region A ⊂ X in the liquid. The milk molecules that will
be found in the region A after stirring n times correspond to the initial region T−nA∩B, so
the milk concentration in the region A at that time will be m(T−nA∩B)

m(A)
, and our experience

is that this number approaches m(B) = 20%, which is consistent with the mathematical
definition of mixing.

Let us already present characterizations of weak mixing and mixing in terms of func-
tions analogous to the characterization (4.1) of ergodicity.

Theorem 4.4. The measure m is weakly mixing if and only if

lim
n→∞

1

n

n−1∑
i=0

∣∣∣∣∫
X

f ◦ T i ḡ dm−
∫
X

f dm

∫
X

ḡ dm

∣∣∣∣ = 0 , (4.5)

and mixing if and only if

lim
n→∞

∫
X

f ◦ T n ḡ dm =

∫
X

f dm

∫
X

ḡ dm , (4.6)

for all f, g ∈ L2(X,B,m).
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Exercise 4.5. Prove Theorem 4.4.

[Hint: Simple functions. The two parts can be proved simultaneously with the aid of
Lemma 4.9 below.]

Exercise 4.6. Recall from Exercise 2.47 that the angle doubling map T : x 7→ 2x (mod 1)
is ergodic. Show that it is mixing.

[Hint: Fourier. Consider f ∈ L2 and the functions g(x) = e2πimx, m ∈ Z, which span L2.]

Given the discussion above, the next result is obvious.

Lemma 4.7. Invariant measures have the following hierarchy:

(strong) mixing =⇒ weak mixing =⇒ ergodicity.

The hierarchy in Lemma 4.7 is strict, in that none of the implications can be reversed.
For example, ergodicity does not imply weak mixing:

Exercise 4.8. Recall from Exercise 2.26 that a rotation of the circle by an irrational angle
is ergodic. Show that it is not weakly mixing.

[Hint: f(x) = g(x) = e2πix.]

Weak mixing, though, is not a whole lot weaker than mixing. The following well-known
lemma will help convince the reader of their near equivalence.

A set N ⊂ N is said to have zero density if

lim
n→∞

1

n
|N ∩ {1, . . . , n}| = 0 ,

where | · | denotes the cardinality of a set.

Lemma 4.9 (Koopman–von Neumann). A bounded sequence of numbers an ∈ C, n ≥ 0,
satisfies

lim
n→∞

1

n

n−1∑
i=0

|ai| = 0

if and only if there exists an index set N ⊂ N of zero density such that

lim
n→∞, n/∈N

an = 0 .

The proof can be found, for instance, in Walters [17]. As an immediate application
we observe that a measure-preserving transformation is weakly mixing if and only if the
mixing condition (4.4) holds after possibly excluding a subsequence of zero density. This
result is so useful for proofs that we formulate it as a theorem.

Theorem 4.10 (Weak mixing is nearly mixing). The measure m is weakly mixing if and
only if there exists an index set N ⊂ N of zero density such that

lim
n→∞, n/∈N

m(T−nA ∩B) = m(A) m(B)

for all A,B ∈ B.
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In fact, it is not straightforward to give examples of weakly mixing transformations
that are not mixing, but they do exist; see, e.g., Parry [9] for an example due to Kakutani
and von Neumann, or Sarig [15] for an example due to Chacon.

Ergodicity and weak mixing are related through product transformations. Recall from
Exercise 2.16 that if (X,B,m, T ) is an mpt, then the product mpt (X ×X,B ×B,m×
m, T × T ) is determined by (T × T )(x, y) = (T (x), T (y)).

Theorem 4.11. The following conditions are equivalent:

(1) T is weakly mixing.
(2) T × T is ergodic.
(3) T × T is weakly mixing.

The reader should beware of the corollary

T is ergodic 6=⇒ T × T is ergodic =⇒ T is ergodic.

Exercise 4.12. It was shown in Exercise 2.26 that the Lebesgue measure m is ergodic
for the map T : S1 → S1 : x 7→ x + α (mod 1) if α is irrational. Prove that the
Lebesgue measure m × m on the two dimensional torus T2 = S1 × S1 is not ergodic for
T × T : T2 → T2 : (x, y) 7→ (x+ α, y + α) (mod 1).

[Remark: It is not part of the exercise, but it can be shown similarly to Exercise 2.26 that
(x, y) 7→ (x+ α, y + β) (mod 1) is uniquely ergodic if and only if {α, β, 1} are rationally
independent, which means that k1α+k2β+k3 = 0 for ki ∈ Q only when k1 = k2 = k3 = 0.]

On the other hand, strong mixing of T and T × T are equivalent:

Exercise 4.13. Show that

T is mixing ⇐⇒ T × T is mixing.

[Hint: Mimic the proof of Theorem 4.11 below.]

Example 4.14. The map T ×T : T2 → T2 : (x, y) 7→ (2x, 2y) (mod 1) is mixing, because
T : S1 → S1 : (x, y) 7→ 2x (mod 1) is mixing by Exercise 4.6.

Proof of Theorem 4.11. We follow Walters [17]. The basic ideas used in the proof
are that (a) before considering general sets in B×B, we consider the rectangles A×B ∈
B ×B which generate the product sigma-algebra, and that (b) we view convergence in
arithmetic mean as ordinary convergence excluding a subsequence of zero density as in
Lemma 4.9.

Since (3) ⇒ (2), it suffices to prove the implications (2) ⇒ (1) ⇒ (3).

(1) ⇒ (3): Let Ai, Bi ∈ B (i = 1, 2). By Theorem 4.10, there exist index sets Ni ⊂ N
(i = 1, 2) of zero density such that

lim
n→∞, n/∈Ni

m(T−nAi ∩Bi) = m(Ai) m(Bi) .

Since (T × T )−n(A1 × A2) ∩ (B1 ×B2) = (T−nA1 ∩B1)× (T−nA2 ∩B2), we see that

m×m((T × T )−n(A1 × A2) ∩ (B1 ×B2)) = m(T−nA1 ∩B1) m(T−nA2 ∩B2) .
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The right side converges to m(A1)m(B1)m(A2)m(B2) = m×m(A1×A2) m×m(B1×B2),
as n→∞ with the constraint n /∈ N1 ∪ N2. Since N1 ∪ N2 has zero density, Lemma 4.9
yields

lim
n→∞

1

n

n−1∑
i=0

∣∣m×m((T × T )−i(A1 × A2) ∩ (B1 ×B2))

−m×m(A1 × A2) m×m(B1 ×B2)
∣∣ = 0 .

Fact: It follows that the same result holds for two arbitrary sets A,B ∈ B ×B in place
of the rectangles A1 × A2 and B1 ×B2.1

(2) ⇒ (1): Let A,B ∈ B. The ergodicity of T × T implies

lim
n→∞

1

n

n−1∑
i=0

m(T−iA ∩B) = lim
n→∞

1

n

n−1∑
i=0

m×m((T × T )−i(A×X) ∩ (B ×X))

= m×m(A×X) m×m(B ×X) = m(A) m(B)

as well as

lim
n→∞

1

n

n−1∑
i=0

(m(T−iA ∩B))2 = lim
n→∞

1

n

n−1∑
i=0

m×m((T × T )−i(A× A) ∩ (B ×B))

= m×m(A× A) m×m(B ×B) = (m(A) m(B))2 .

(In particular, we just showed that T is ergodic.) Combining the two, we arrive at

lim
n→∞

1

n

n−1∑
i=0

(m(T−iA ∩B)−m(A) m(B))2 = 0 .

By Lemma 4.9, there exists an index set N ⊂ N of zero density such that

lim
n→∞, n/∈N

(m(T−nA ∩B)−m(A) m(B))2 = 0 ,

or, equivalently,
lim

n→∞, n/∈N
m(T−nA ∩B) = m(A) m(B) ,

which shows that T is weakly mixing. �

We will soon encounter even stronger notions of mixing, namely the Kolmogorov prop-
erty and exactness, followed by the Bernoulli and Markov properties. Before introducing
these concepts is possible, it is necessary to dwell a little on sub-sigma-algebras and con-
ditional expectations, which is what we do next.

1This can be proved, for instance, using the π–λ lemma: Let R = {E1 × E2 : E1, E2 ∈
B} be the collection of rectangles. Then R is a π-system, which generates the product sigma-
algebra, i.e., σ(R) = B × B. Here σ(R) denotes the smallest sigma-algebra containing R.
Given A1 × A2 ∈ R, denote by L the collection of all those B ∈ B × B for which
limn→∞

1
n

∑n−1
i=0

∣∣m×m((T × T )−i(A1 ×A2) ∩B)−m×m(A1 ×A2) m×m(B)
∣∣ = 0. Then L is a λ-

system, and we have shown that R ⊂ L . By the π–λ lemma, B ×B = σ(R) ⊂ L , so convergence
actually takes place for any rectangle A1 × A2 and any B ∈ B ×B. Similarly, A1 × A2 can then be
replaced with any A ∈ B ×B. We skip the details.
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2. Preliminaries: Convergence of conditional expectations along nested
sequences of sub-sigma-algebras

2.1. Sequences of sub-sigma-algebras. Recall that the intersection of an arbitrary
family of sigma-algebras is a sigma-algebra. Given a decreasing sequence of sub-sigma-
algebras B ⊃ A1 ⊃ A2 ⊃ · · · , the notation

An ↓ A

means that A = ∩n≥1An. Of course, A ⊂ An ⊂ B. Likewise,

An ↓ A (mod m)

means that A is a sub-sigma-algebra satisfying A = ∩n≥1An (mod m).

Given an increasing sequence of sub-sigma-algebras A1 ⊂ A2 ⊂ · · · ⊂ B, the union
∪n≥1An is not necessarily an algebra, let alone a sigma-algebra; the notation

An ↑ A

means that A is the sigma-algebra σ(∪n≥1An) generated by the union, i.e., the smallest
sigma-algebra containing each An. Obviously An ⊂ A ⊂ B. Similarly,

An ↑ A (mod m)

means that A is a sub-sigma-algebra satisfying A = σ(∪n≥1An) (mod m).

Example 4.15. Recall Example 3.9, where we constructed a sub-sequence of sigma-
algebras An, n ≥ 1, with the aid of the partitions of the interval [0, 1) into subintervals
[2−n(i − 1), 2−ni), 1 ≤ i ≤ 2n. Since increasing n leads to a finer partition, we have
A1 ⊂ A2 ⊂ · · · . It is tempting to conclude that the piecewise constant approximation
E(f |An) approaches f ∈ L1(X) as n → ∞. In fact, it does: It is not hard to check that
An ↑ B (mod m), from which limn→∞ E(f |An) = E(f |B) = f follows by the theorem
below.

Theorem 4.16 (Lévy–Doob upward/downward convergence theorem). Let (X,B,m) be
a probability space and A ,An, n ≥ 1, sub-sigma-algebras. Suppose that either An ↑ A or
An ↓ A . Then

lim
n→∞

E(f |An) = E(f |A ) almost surely and in Lp,

for all f ∈ Lp(X,B,m) and for all p ∈ [1,∞).

The result is also known as a martingale convergence theorem, because the sequence
E(f |An) is a martingale if An ↑ A and a reverse (or backward) martingale if An ↓
A . Many books, such as [9, 4, 18], present just the L1 version of the Lévy–Doob up-
ward/downward theorem theorem. The Lp version above, together with its proof, can be
found, e.g., in James Norris’ lecture notes [8]. We omit the proof, but it is worthwhile to
point out that — analogously to Exercise 3.19 — the L1 version implies the Lp version:

Exercise 4.17. Let either An ↑ A or An ↓ A . Suppose there exists p ∈ [1,∞) such that

lim
n→∞

‖E(f |An)− E(f |A )‖p = 0 , f ∈ Lp(X,B,m) .

Show that the same statement then holds in fact for all p ∈ [1,∞).

[Hint: Truncate f as in Exercise 3.19.]
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For an increasing sequence A1 ⊂ A2 ⊂ · · · of sub-sigma-algebras it is obviously true
that Lp(X,A1,m) ⊂ Lp(X,A2,m) ⊂ · · · . As an immediate application of Theorem 4.16,
we also obtain

Corollary 4.18. Suppose An ↑ A ⊂ B. Then ∪∞n=1L
p(X,An,m) is a dense subspace of

Lp(X,A ,m).

The sub-sigma-algebras T−nA = {T−nA : A ∈ A } introduced in Section 2 arise
naturally in ergodic theory. For example, if f : X → C is a A -measurable function, then
f ◦T n is T−nA -measurable. In general, there is no inclusion relation between T−nA and
T−mA for n 6= m. If T : X → X has a measurable inverse, the sub-sigma-algebras T nA ,
n ≥ 1, are defined similarly: T nA = {T nA : A ∈ B}. In the following sections we study
situations in which the sub-sigma-algebras T−nA or T nA form nested sequences.

3. Kolmogorov automorphisms and exact endomorphisms

We are now ready to introduce two closely related mixing properties, one concerning
non-invertible and the other invertible transformations.

A measure-preserving transformation (X,B,m, T ) is said to be invertible, if T : X →
X is an invertible map and the inverse T−1 is measurable, i.e., (T−1)−1A = TA ∈ B for
all A ∈ B. Then (X,B,m, T−1) is an mpt. Measure-preserving transformations are also
known as endomorphisms2 and invertible mpts as automorphisms.

Definition 4.19. A probability-preserving transformation (X,B,m, T ) is exact, or an
exact endomorphism, if

T−nB ↓ N (mod m) .

Definition 4.20. An invertible probability-preserving transformation (X,B,m, T ) is a
Kolmogorov automorphism, or K-automorphism, if there exists a sub-sigma-alge-
bra A ⊂ B such that

T−1A ⊂ A ; T nA ↑ B (mod m) and T−nA ↓ N (mod m) .

Note that, in the case of the full sigma-algebra, T−1B ⊂ B is automatic, so it is
not explicitly stated as a condition for exactness. If T is invertible, then T−1B = B, so
an invertible transformation in never exact, save for the trivial case B = N (mod m).
In some sense the exactness condition T−nB ↓ N (mod m) means that T is far from
being invertible. Exactness and the Kolmogorov property are analogous concepts for
non-invertible and invertible transformations.

Perhaps at first it seems mysterious from the definitions why the properties introduced
above are regarded as mixing properties.

Theorem 4.21. Exact endomorphisms and Kolmogorov automorphisms are mixing.

In standard ergodic theory books the theorem is proved using spectral theory. We
present a conceptually simple alternative proof, because it makes it crystal clear how the
conditions on the sigma-algebras imply mixing in each case.

2Some authors reserve the term endomorphism to the case where T is onto.
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Proof of Theorem 4.21. We prove mixing by showing (4.6) for all f, g ∈ L2(X,B,m).
By subtracting the right side of (4.6) from the left one, it is clearly sufficient to prove
that

lim
n→∞

∫
X

f ◦ T n g dm = 0

holds for all f, g ∈ L2(X,B,m) such that
∫
X
g dm = 0.

Exact case: Let f, g ∈ L2(X,B,m) with
∫
X
g dm = 0. Then f ◦ T n is T−nB-

measurable. By the rules of conditional expectation,∫
X

f ◦ T n g dm =

∫
X

f ◦ T n E(g|T−nB) dm .

Thus, the Cauchy–Schwarz inequality implies∣∣∣∣∫
X

f ◦ T n g dm

∣∣∣∣ ≤ ‖f ◦ T n‖2‖E(g|T−nB)‖2 = ‖f‖2‖E(g|T−nB)‖2.

Since T−nB ↓ N and g ∈ L2(X,B,m), the Lévy–Doob upward/downward convergence
theorem implies that, in the L2 norm,

E(g|T−nB)→ E(g|N ) =

∫
X

g dm = 0 .

This completes the proof in the exact case.

Kolmogorov case: Let k ≥ 0, f ∈ L2(X,T kA ,m) and g ∈ L2(X,B,m) with
∫
X
g dm =

0. Then f ◦ T n is T k−nA -measurable, so the assumption T−nA ↓ N implies∫
X

f ◦ T n g dm =

∫
X

f ◦ T n E(g|T k−nA ) dm→ 0

precisely as above. Note the restriction f ∈ L2(X,T kA ,m), however, which is not suffi-
cient for mixing. To prove that we have the corresponding result for any f ∈ L2(X,B,m),
we use the condition T kA ↑ B. If f ∈ L2(X,B,m), then E(f |T kA ) ∈ L2(X,T kA ,m).
Hence,

lim
n→∞

∫
X

E(f |T kA ) ◦ T n g dm = 0

by what we have proved so far. Since T kA ↑ B, the Lévy–Doob upward/downward
convergence theorem implies that, in the L2 norm,

E(f |T kA )→ E(f |B) = f .

By taking k sufficiently large, we see that

lim sup
n→∞

∣∣∣∣∫
X

f ◦ T n g dm

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∫
X

(f − E(f |T kA )) ◦ T n g dm

∣∣∣∣
≤ ‖f − E(f |T kA )‖2‖g‖2

is arbitrarily small. The proof is now complete.3 �

3We ignored the minor detail that the sequences of sigma-algebras converge to N and B only
(mod m). For example, T−nB ↓ N (mod m) means that T−nB ↓ ∩n≥1T

−nB where ∩n≥1T
−nB = N

(mod m). This is no cause of worry, because if two sub-sigma-algebras satisfy A1 = A2 (mod m), then
the conditional expectations satisfy E(f |A1) = E(f |A2) almost everywhere; see Lemma 3.12.
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We learn from the proof that the conditions for exactness and the Kolmogorov property
are actually tailor-made for mixing.

We will see examples of exact endomorphisms and Kolmogorov automorphisms next.

4. Bernoulli and Markov shifts

In this section we introduce the so-called Markov and Bernoulli shifts, which form
important classes of probability-preserving transformations.

For each integer k ≥ 2, we define Sk = {1, . . . , k}. We call Sk the set (or space)
of k symbols. Thus, the cartesian products

SN
k =

∏
i∈N

Sk and SZ
k =

∏
i∈Z

Sk

consist, respectively, of one-sided sequences x = (xi)i∈N and two-sided sequences x =
(xi)i∈Z of symbols xi ∈ Sk. In explicit expressions involving two-sided sequences, it is
necessary to single out the zeroth symbol to avoid confusion; we single it out with a star,
which clarifies the distinction between the two-sided sequences (. . . , x−1,

∗
x0, x1, . . . ) and

(. . . , x0,
∗
x1, x2, . . . ), etc.

A natural map acting on sequences of each type is the shift map defined by

(τx)i = xi+1

for each i ∈ N or Z. More precisely, we define the one-sided shift (of k symbols)

τ : SN
k → SN

k : (x0, x1, x2 . . . ) 7→ (x1, x2, . . . )

and the two-sided shift (of k symbols)

τ̃ : SZ
k → SZ

k : (. . . , x−1,
∗
x0, x1, . . . ) 7→ (. . . , x0,

∗
x1, x2, . . . ) .

Thus, τ and τ̃ simply shift each symbol one place to the left, save for τ which also
annihilates the zeroth symbol of the original sequence. The two-sided shift τ̃ is clearly
invertible and the one-sided shift τ is onto but not one-to-one.

Let us construct a probability-preserving transformations out of τ and τ̃ . This calls
for a sigma-algebra and an invariant probability measure. To that end, let Σk denote the
sigma-algebra on Sk which comprises all subset of Σk. Then we can endow SN

k and SZ
k ,

respectively, with the product sigma-algebras

ΣN
k and ΣZ

k .

Let us recall what these are. Given any finite set of symbols s0, . . . , sm ∈ Sk, m ≥ 0, the
set

[s0, . . . , sm] = {x ∈ SN
k : xi = si , 0 ≤ i ≤ m}

is called a one-sided cylinder set. The product sigma algebra ΣN
k is the sigma-algebra

generated by all one-sided cylinder sets. Likewise, given any sl, . . . , sm ∈ Sk, l ≤ 0 ≤ m,
the set

[sl, . . . ,
∗
s0, . . . , sm] = {x ∈ SZ

k : xi = si , l ≤ i ≤ m}
is called a two-sided cylinder set, and the sigma-algebra ΣZ

k is the one generated by all
two-sided cylinder sets. Finally, note that a probability measure λ on the finite measurable
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space (Sk,Σk) is simply a probability vector (λ1, . . . , λk) where λi = λ(i). Given such a
measure, we can consider the product measures

λN on (SN
k ,Σ

N
k ) and λZ on (SZ

k ,Σ
Z
k ).

Here λN is the unique probability measure satisfying

λN([s0, . . . , sm]) = λs0 · · ·λsm

for all cylinder sets. The case of λZ is similar.

Exercise 4.22. Show that λN and λZ are invariant measures with respect to τ and τ̃ ,
respectively, regardless of the choice of λ.

[Hint: Work with cylinder sets.]

Definition 4.23. Let k ≥ 2 and let λ = (λ1, . . . , λk) be a probability measure with λi > 0,
1 ≤ i ≤ k.

(1) The ppt (SN
k ,Σ

N
k , λ

N, τ) is called a one-sided Bernoulli shift of k symbols, or
the one-sided (λ1, . . . , λk)-shift.

(2) The ppt (SZ
k ,Σ

Z
k , λ

Z, τ̃) is called a two-sided Bernoulli shift of k symbols, or
the two-sided (λ1, . . . , λk)-shift.

The terms Bernoulli endomorphism and Bernoulli automorphism are also used.

The case k = 1 is excluded as trivial. The strict positivity of λ is a natural assumption;
if, say, λk = 0, the set Sk could be reduced to Sk−1 without any loss of generality.

Before proceeding, let us pause to give the Bernoulli shifts a probabilistic interpreta-
tion, which also explains the name. Suppose we have a dice with k possible outcomes,
namely 1, . . . , k, such that the number i always comes out with probability λi, completely
independently of any previous throws. We throw the dice infinitely many times, and
let ξi denote the random outcome of the ith throw. Then (ξi)i≥0 is a sequence of random
variables, which are independent and identically distributed (i.i.d. for short), each having
the distribution λ. Such sequences of repeated independent trials are called Bernoulli
processes in probability theory. In a realized experiment, every ξi assumes a concrete
value in Sk; by independence of the throws, we have

Probability(ξn = s0, . . . , ξm+n = sm) = λs0 · · ·λsm = λN([s0, . . . , sm])

for any m,n ≥ 0 and any symbols s0, . . . , sm ∈ Sk. The random sequence ξ = (ξi)i≥0 is
called stationary, because the right side is independent of n. Another way of writing
this is

Probability(τnξ ∈ [s0, . . . , sm]) = Probability(ξ ∈ [s0, . . . , sm]) , (4.7)
from which it is seen that the stationarity of ξ is equivalent to the invariance of the
measure λN with respect to the shift τ . The independence of the throws is equivalent to
the invariant measure being the product measure λN. There is a one-to-one correspondence
of one-sided Bernoulli shifts in ergodic theory and sequences of i.i.d. random variables in
probability theory. In particular, the one-sided (1

2
, 1

2
)-shift corresponds to tossing a fair

coin infinitely many times.

Independence is a rather restrictive assumption. We therefore discuss the more general
setting of Markov chains with finite state space. These correspond to so-called Markov
shifts in ergodic theory, of which Bernoulli shifts are special cases. Again, we generate
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a random sequence (ξi)i≥0 of symbols in Σk, but this time the dice has a memory of
the previous throw: the outcome ξi of the ith throw, i ≥ 1, depends on the preceding
outcome ξi−1 but no outcome ξ0, . . . , ξi−2 before that. More precisely, we first assume that
the random outcome ξ0 has some distribution λ = (λ1, . . . , λk), that is, Probability(ξ0 =
r) = λr; for the remaining throws we assume that

Probability(ξi = si | ξ0 = s0, . . . , ξi−1 = si−1) = Probability(ξi = si | ξi−1 = si−1) = psi−1,si

holds for all i ≥ 1 and all symbols. Here pr,s is the probability that the outcome r ∈ Σk

is followed by the outcome s ∈ Σk. In particular,

pr,s ≥ 0 and
∑

1≤s≤k

pr,s = 1 .

Thus, the probabilities pr,s can be viewed as the entries of the matrix

P = (pr,s)1≤r,s≤k

where each row (pr,1, . . . , pr,k) is a probability vector. Such a random sequence (ξi)i≥0 is
called a Markov chain with state space Σk, transition matrix P and initial distribution
λ. We note that the Bernoulli process with i.i.d. outcomes is recovered as the special case
in which every row of P equals λ and λ is strictly positive (i.e., pr,s = λs > 0). We will
next see how the Markov case also yields a probability-preserving transformation.

If the distribution of ξ0 is λ = (λ1, . . . , λk), what is the distribution of ξ1? Since ξ0

and ξ1 are generally not i.i.d., the probability that ξ1 = s is∑
1≤r≤k

λr Probability(ξ1 = s|ξ0 = r) =
∑

1≤r≤k

λr pr,s .

Hence, the distribution of ξ1 is given by the probability vector λP . Similarly, it can be
checked that, if the distribution of ξ0 is λ, then the distribution of ξi is λP i. Thus, the
random variables ξi are identically distributed (but not necessarily independent) if and
only if

λP = λ . (4.8)

It is said that λ is a stationary distribution, if (4.8) holds.

Exercise 4.24. Show that the Markov chain (ξi)i≥0 is stationary if and only if the initial
distribution λ is stationary. In other words, (4.7) holds for all n and all cylinder sets
[s0, . . . , sm] if and only if (4.8) holds.

There exists a well-defined probability measure m on (SN
k ,Σ

N
k ) induced by λ and P ,

called the distribution of the Markov chain ξ = (ξi)i≥0, such that

Probability(ξ ∈ A) = m(A) , A ∈ ΣN
k .

This measure is uniquely determined by its value on the cylinder sets A = [s0, . . . , sm].
Thus, m is the unique measure which satisfies

m([s0, . . . , sm]) = λs0 ps0,s1 · · · psm−1,sm

Exercise 4.25. Show that the Markov chain (ξi)i≥0 is stationary if and only if the measure
m induced by λ and P is invariant with respect to the one-sided shift map τ : SN

k → SN
k .
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The measure m can be extended to a probability measure m̃ on (SZ
k ,Σ

Z
k ), which is

invariant with respect to the two-sided shift τ̃ : SZ
k → SZ

k . This is done by demanding
that

m̃([sl, . . . ,
∗
s0, . . . , sm]) = m̃([

∗
sl, . . . , s0, . . . , sm]) = m([sl, . . . , s0, . . . , sm])

for all l ≤ 0 ≤ m and all symbols.

Definition 4.26. Let λ = (λ1, . . . , λk) be a stationary distribution for the transition
matrix P .

(1) The ppt (SN
k ,Σ

N
k ,m, τ) is called a one-sided Markov shift of k symbols, or the

one-sided (P, λ)-shift.

(2) The ppt (SZ
k ,Σ

Z
k , m̃, τ̃) is called a two-sided Markov shift of k symbols, or the

two-sided (P, λ)-shift.

The terms Markov endomorphism and Markov automorphism are also used.

It should be emphasized that the only distinction between Markov and Bernoulli shifts
is the measure on the product space (SN

k ,Σ
N
k ) or (SZ

k ,Σ
Z
k ). In the Bernoulli case it is the

product measure, corresponding to i.i.d. Bernoulli process, while in the Markov case the
measure is more generally induced by a transition matrix and a stationary distribution.
Of course, Bernoulli shifts are special cases of Markov shifts, as discussed earlier.

The case that concerns us the most is when there exists a power N > 0 such that PN

has strictly positive entries:

(PN)r,s > 0 , 1 ≤ r, s ≤ k .

Such a transition matrix P is called irreducible and aperiodic. We borrow without
proof the following result from the theory of Markov chains:

Lemma 4.27. If the k× k transition matrix P is irreducible and aperiodic, there exists a
unique stationary distribution, i.e., a probability vector λ = (λ1, · · · , λk) satisfying (4.8).
Moreover, λ is strictly positive (λs > 0, 1 ≤ s ≤ k) and limn→∞(P n)r,s = λs.

The last statement means that each row of P n converges to the probability vector λ.

Definition 4.28. A Markov shift is called irreducible and aperiodic if the corresponding
transition matrix P is irreducible and aperiodic.

Every Bernoulli shift is an irreducible and aperiodic Markov shift, since pr,s = λs > 0.

Having introduced the concepts, we are now ready for the main result concerning the
mixing properties of Markov and Bernoulli shifts.

Theorem 4.29. An irreducible and aperiodic one-sided Markov shift is an exact endo-
morphism. An irreducible and aperiodic two-sided Markov shift is a Kolmogorov auto-
morphism.

Proof. The proof follows Parry [9] and Walters [17]. It is not complicated, but
requires a bit of attention.

One-sided case: Let B = ΣN
k , which is the sigma-algebra generated by all cylinder sets

[s0, . . . , sm], m ≥ 0. The objective is to show that τ−nB ↓ N (mod m), which means
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that the sub-sigma-algebra B∞ = ∩n≥1τ
−nB satisfies the condition m(A) ∈ {0, 1} for all

A ∈ B∞. The strategy is to prove that

m(A ∩ [s0, . . . , sm]) = m(A) m([s0, . . . , sm]) (4.9)

holds for any A ∈ B∞ and any cylinder set. Namely, this implies (exercise!) that the
sigma-algebras B∞ and B are independent, meaning

m(A ∩B) = m(A) m(B) , A ∈ B∞ , B ∈ B .

In particular, for any A ∈ B∞ ⊂ B, we then have m(A) = m(A)2, or m(A) ∈ {0, 1} as
desired.

It remains to prove (4.9). To this end, we first note that the sub-sigma-algebra τ−nB
is generated by sets of the form τ−n[r0, . . . , rl] = {x ∈ SN

k : xn = r0, . . . , xn+l = rl}. Next,
let B = [s0, . . . , sm] and C = [r0, . . . , rl] be two cylinder sets. If n ≥ m+ 2, we have

m(B ∩ τ−nC) =
∑

1≤t1,...,tn−m−1≤k

m([s0, . . . , sm, t1, . . . , tn−m−1, r0, . . . , rl])

=
∑

1≤t1,...,tn−m−1≤k

λs0 ps0,s1 · · · prl−1,rl

= λs0 ps0,s1 · · · psm−1,sm(P n−m)sm,r0 pr0,r1 · · · prl−1,rl

= (P n−m)sm,r0λ
−1
r0
·m(B) m(C)

= (P n−m)sm,r0λ
−1
r0
·m(B) m(τ−nC) .

Since P is irreducible and aperiodic, Lemma 4.27 applies, so limn→∞(P n−m)sm,r0λ
−1
r0

= 1.
Thus, for any m ≥ 0 and ε ∈ (0, 1), there exists n0 = n0(m, ε) such that

(1− ε) m(B) m(τ−nC) ≤ m(B ∩ τ−nC) ≤ (1 + ε) m(B) m(τ−nC)

holds for all n ≥ n0, and all B = [s0, . . . , sm] and C = [r0, . . . , rl], l ≥ 0. This implies
(exercise!)

(1− ε) m(B) m(A) ≤ m(B ∩ A) ≤ (1 + ε) m(B) m(A) , A ∈ τ−nB ,

for all n ≥ n0 and all cylinder sets B = [s0, . . . , sm], where m has the value fixed earlier.
In particular, if A is an arbitrary set in the intersection B∞ = ∩n≥1τ

−nB, we see that

(1− ε) m(B) m(A) ≤ m(B ∩ A) ≤ (1 + ε) m(B) m(A)

holds for all and all cylinder sets B = [s0, . . . , sm], with an arbitrary m ≥ 0. Since ε was
arbitrary, (4.9) follows.

Two-sided case: Let B = ΣZ
k and let A be the sub-sigma-algebra generated by

the “one-sided” cylinder sets [
∗
s0, . . . , sm], m ≥ 0. It follows from τ̃−1[

∗
s0, . . . , sm] =

∪1≤s≤k[
∗
s, s0 . . . , sm] that τ̃−1A ⊂ A . Next, we show that τ̃nA ↑ B. For each n ≥ 1,

τ̃nA is a sub-sigma-algebra of B containing all cylinder sets of the form [sl, . . . ,
∗
s0, . . . , sm],

where−n ≤ l ≤ 0 ≤ m. Thus, ∪n≥1τ̃
nA ⊂ B contains all cylinder sets [sl, . . . ,

∗
s0, . . . , sm],

l ≤ 0 ≤ m, which generate B, so σ(∪n≥1τ̃
nA ) = B. In other words, τ̃nA ↑ B. Finally,

τ̃−nA ↓ N (mod m̃) is proved similarly to the one-sided case. �

Exercise 4.30. Bridge the gaps in the proof concerning the independence of B∞ and B.

[Hint: π–λ lemma.]
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To conclude, we have established the following hierarchy of mixing properties:

non-invertible ppt invertible ppt

one-sided Bernoulli shift two-sided Bernoulli shift
⇓ ⇓

one-sided irreducible two-sided irreducible
aperiodic Markov shift aperiodic Markov shift

⇓ ⇓
exact endomorphism Kolmogorov automorphism

⇓ ⇓
mixing
⇓

weakly mixing
⇓

ergodic

The reader should now be equipped to solve the following informative exercise, by an
approach similar to the one in the exactness proof of a one-sided Markov shift above.

Exercise 4.31. Recall that the angle doubling map T : S1 → S1 : (x, y) 7→ 2x (mod 1) is
mixing by Exercise 4.6. Prove that it is exact.

[Hint: The dyadic intervals Im,i = [2−m(i − 1), 2−mi], 1 ≤ i ≤ 2m, m ≥ 1, generate the
Borel sigma-algebra on S1. The dyadic intervals, with m fixed, can be parametrized in a
clever way: Denote [s0, . . . , sm−1] = {x ∈ [0, 1] :

∑m−1
i=0 2−i−1si ≤ x ≤

∑m−1
i=0 2−i−1si +

2−m} for all si ∈ {0, 1}, 0 ≤ i ≤ m− 1. Then Im,i = [s0, . . . , sm − 1] for suitable indices.
Writing J0 = [0, 1

2
] and J1 = [1

2
, 1], we have x ∈ [s0, . . . , sm−1] if and only if T i(x) ∈ Jsi

(mod 1), 0 ≤ i ≤ m− 1.]



CHAPTER 5

Introduction to information and entropy

The rest of these lecture notes focuses on the connection between information theory
and ergodic theory, and is based mostly on Parry [9]. On the one hand, we will prove
a fundamental result in information theory with ergodic-theoretic means. On the other
hand, we will see how the information-theoretic notion of entropy can be be exploited in
ergodic theory.

1. Concepts

In this section we introduce and motivate the concepts of information and entropy.

Let (X,B,m) be a probability space. Suppose x ∈ X is picked at random according
to m, and that our task is to try to guess which point x is. From the probabilistic point of
view, the task would be perfectly successful if we could identify a set C ∈ B of measure
zero which contains x. Of course, without any information given on x, we can only say
that Probability(x ∈ C) = m(C) for each C ∈ B. Now, suppose someone reveals to us
that x ∈ A (where A ∈ B is some particular set). We then gain information on x; the
smaller m(A), the more information. Motivated by this, we associate to each set A an
amount of gained information, ϕ(m(A)) ≥ 0, which only depends on the measure m(A)
of the set.

To rephrase, we think of A as the actual information gained, and of ϕ(m(A)) as the
amount of information gained. The latter is a numerical quantifier of the former.

Above, ϕ : (0, 1] → [0,∞) is a function still to be determined. (For reasons soon
to be discovered, we exclude 0 from the domain.) It turns out that the choice of ϕ is
essentially unique, after imposing a natural condition. Namely, suppose we receive two
independent pieces of information, which do not affect each other in any way: x ∈ A and
x ∈ B, where the sets A,B ∈ B satisfy m(A ∩ B) = m(A) m(B). Then the amount of
gained information associated to A ∩ B should be the sum of the amounts associated to
A and B separately, or ϕ(m(A) m(B)) = ϕ(m(A)) +ϕ(m(B)). Thus, we demand that the
function ϕ satisfy

ϕ(st) = ϕ(s) + ϕ(t) , 0 < s, t ≤ s+ t ≤ 1 .

Finally, since x ∈ X represents worthless information and x ∈ A, m(A) ≈ 1, nearly
worthless information, we might set ϕ(1) = 0 and demand ϕ(t) ≈ 0 if t ≈ 1. But let us
just assume that ϕ is bounded in a neighborhood (1 − δ, 1] of 1 for some δ > 0. By the
exercise below, we are now forced to take

ϕ(t) = − log t , 0 < t ≤ 1 ,

up to a constant multiple. Observe that limt→0+ ϕ(t) = ∞ is compatible with the idea
that x ∈ A with m(A) = 0 corresponds to perfect information on x.

61
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Exercise 5.1. Suppose ψ : R → R satisfies ψ(s + t) = ψ(s) + ψ(t) and is bounded in a
neighborhood of 0. Show that ψ(t) = tψ(1) for all t ∈ R. As an application, show that
ϕ(t) = C log t for some constant C.

[Hint: Start by proving the identity ψ(t) = tψ(1) for rational numbers t. Assuming ψ is
continuous at 0, extend the identity to all of R. Then show that continuity at 0 follows
from boundedness in a neighborhood of 0. As for the application, note that ϕ admits a
unique extension from (0, 1] to (0,∞) satisfying ϕ(st) = ϕ(s) + ϕ(t).]

Above we learned that the number

I(A) = − log m(A)

is a reasonable quantifier of the amount of information gained from a set A ∈ B. We are
now ready to introduce the information function and the entropy. They are defined with
respect to multiple sets A1, A2, . . . forming a partition of X.

Definition 5.2. Let α = {A1, A2, . . . } ⊂ B be a countable or finite collection of sets. We
say that α is a countable partition if m(X \∪i≥1Ai) = 0 and m(Ai∩Aj) = 0 for i 6= j.

Definition 5.3. Let α be a countable partition. The function

I(α) = −
∑
A∈α

1A log m(A)

from X into [0,∞) is the information function of α. Its expected value

H(α) =

∫
X

I(α) dm = −
∑
A∈α

m(A) log m(A)

is the entropy of α.1

The number H(α) is called entropy because of its similarity to entropy in statistical
mechanics. The latter has the expression −kB

∑
i pi log pi, where kB > 0 is the Boltzmann

constant and pi is the probability that the state i of the statistical mechanical system at
issue is occupied. We will not discuss this further.

If α is a countable partition, almost every x ∈ X belongs to a unique A ∈ α. It is
convenient to denote this unique partition element by α(x). We then have simply

I(α)(x) = − log m(α(x))

for almost every x, which connects in an obvious way the information function of a
partition to the information gained from individual sets. The information function tells
us the amount of information I(α)(x) gained from the partition α on each point x. It is
(almost) constant on partition elements. Observe that the entropy H(α) can be viewed
as the weighted average of − log m(A) with weight m(A) over all A ∈ α. Alternatively,
we have

H(α) = −
∫
X

log m(α(x)) dm ,

which is the expected value of I(α(x)).

1In the definition of I(α) we exclude any terms with m(A) = 0 from the sum. In the definition of
H(α) this is automatic by assuming 0 log 0 = 0. Similar conventions will be used hereafter. There is
deliberate overloading of the symbol I, which should not cause confusion.
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Then most interesting question is how much additional information is gained from a
set or a countable partition when some prior information has already been given. This
leads to the notions of conditional information and entropy, which we next introduce.
Suppose we have already been given information in the form of a set A ∈ B, after which
we are given additional information in the form of a set B ∈ B. The most obvious
quantifier of the amount of additional information is the number

I(B|A) = ϕ(m(B|A)) = − log m(B|A)

where m(B|A) = m(A∩B)
m(A)

stands for the conditional probability of B given A. This is the
right choice, because it results in the right amount of total information gained: altogether,
we end up receiving the informations A and B, or A ∩B, and

− log m(A ∩B) = − log(m(B|A)m(A)) = − log m(A)− log m(B|A) .

The left side is the total amount of information gained, which on the right side is ex-
pressed as the sum of two amounts — the information gained from A and the additional
information gained from B given A. This immediately leads us to define

I(β|A) = −
∑
B∈β

1B log m(B|A)

as the information function of a countable partition β given a set A. As natural as the
definition is, it is not sufficient for our purposes; we need to be able to receive information
in the form of a countable partition, or even a sub-sigma-algebra. This is accomplished in
a straightforward manner. Namely, the elementary conditional probability m(B|A) given
a set A is replaced by the general conditional probability m(B|A ) = E(1B|A ) given a
sub-sigma-algebra A .

Definition 5.4. Let β be a countable partition and A a sub-sigma-algebra. The function

I(β|A ) = −
∑
B∈β

1B log m(B|A )

is the conditional information (function) of β given A . Its expected value

H(β|A ) =

∫
X

I(β|A ) dm = −
∫
X

m(B|A ) log m(B|A ) dm

is the conditional entropy of β given A . If α is a countable partition, we often write
I(β|α) for I(β|σ(α)) and H(β|α) for H(β|σ(α)).

Note that m(B|A ) is a function butH(β|A ) is a constant. The expression forH(β|A )
requires a small argument.2 It can very well happen that H(β|A ) = ∞; we will return
to this later.

Being given no prior information at all corresponds to conditioning on the trivial
sigma-algebra N = {∅, X}. Since m(B|N ) = E(1B|N ) =

∫
X

1B dm = m(B), we obtain

I(β|N ) = I(β) and H(β|N ) = H(β)

2Because 1B log m(B|A ) is non-negative, Tonelli’s theorem guarantees that
∫
X
I(β|A ) dm =

−
∑
B∈β

∫
X

1B log m(B|A ) dm. Using the monotone convergence theorem −
∫
X

1B log m(B|A ) dm =
limM→∞

∫
X

1B min(M,− log m(B|A )) dm. Because the function min(M,− log m(B|A )) is bounded
and A -measurable, the properties of conditional expectation imply that the previous expression equals
limM→∞

∫
X

m(B|A ) min(M,− log m(B|A )) dm, which equals −
∫
X

m(B|A ) log m(B|A ) dm, again by
the monotone convergence theorem.
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as intuition suggests. If we have already been given more information in A than is
contained in β, no additional information is gained:

Exercise 5.5. Show that

I(β|A ) = 0 ⇐⇒ H(β|A ) = 0 ⇐= β ⊂ A (mod m)

(The last implication can be reversed.)

In practice, we will always condition on a sigma-algebra generated by a partition. The
next exercise focuses on this case.

Exercise 5.6. Let α and β be a countable partitions. Show that, for almost every x,

I(β|α)(x) = I(β|α(x))(x) = I(β(x)|α(x)) .

Thus, the definition of I(β|α) generalizes the definition of I(β|A), which generalizes the
definition of I(B|A). Also, give a verbal interpretation to the consequence

H(β|α) =

∫
X

I(β(x)|α(x)) dm(x) = −
∫
X

log m(β(x)|α(x)) dm(x) .

[Hint: Exercise 3.8.]

2. Basic identities for information and entropy

Let α and β be countable partitions. We write α ≤ β of β ≥ α if every element of α
is a union of elements in β. We then say alternatively that α is coarser than β, β is finer
than α, or β is a refinement of α. For example {[0, 1

2
], [1

2
, 1]} ≤ {[0, 1

4
], [1

4
, 2

4
], [2

4
, 3

4
], [3

4
, 1]}.

Intuitively, α ≤ β means that β contains at least the same information as α. A similar
concept can be defined (mod m). We also define the countable partition

α ∨ β = {A ∩B : A ∈ α,B ∈ β} ,
called the join of α and β. Clearly α ∨ β is the coarsest partition which is finer than α
and β. The join α ∨ β represents the total information in α and β. The join of any finite
number of countable partitions is defined and interpreted similarly.

Lemma 5.7 (Basic identities). Let α, β and γ be countable partitions. Then

I(α ∨ β|γ) = I(α|γ) + I(β|α ∨ γ)

and
H(α ∨ β|γ) = H(α|γ) +H(β|α ∨ γ) .

Since the left side is symmetric in α and β, of course

I(α ∨ β|γ) = I(β|γ) + I(α|β ∨ γ)

also holds. The lemma is so natural it could have been guessed: Suppose we have been
given the information γ. Then the total amount of additional information gained from α
and β will be the same whether we receive α and β simultaneously or one after the other.

Proof of Lemma 5.7. We check that the left side equals the right side. To that end,
we appeal to the general fact that I(α|γ)(x) = I(α(x)|γ(x)) = log m(γ(x))− log m(α(x)∩
γ(x)), for almost every x, found in Exercise 5.6. To simplify the notation, suppose x is
fixed and denote A = α(x), B = β(x) and C = γ(x). (This makes sense for any x in the
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complement of a set of measure zero, which is sufficient for our purposes). In particular,
we note that (α ∨ β)(x) = A ∩B and (α ∨ γ)(x) = A ∩ C. The claim then becomes

log m(C)− log m(A ∩B ∩ C)

= log m(C)− log m(A ∩ C) + log m(A ∩ C)− log m(A ∩B ∩ C) ,

which is a tautology. �

The basic identities have the following elementary, but useful, consequences:

Corollary 5.8. Let α, β and γ be countable partitions. Then

β ≤ γ =⇒ I(α ∨ β|γ) = I(α|γ) and H(α ∨ β|γ) = H(α|γ)

as well as
α ≤ β =⇒ I(α|γ) ≤ I(β|γ) and H(α|γ) ≤ H(β|γ) .

All of the implications above are perfectly natural from the point of view of gained
information. The reader is invited to interpret the claims in that way.

Exercise 5.9. Prove Corollary 5.8.

Although not a consequence of the basic identities, the following lemma complements
Corollary 5.8 nicely:

Lemma 5.10. Let α, β and γ be countable partitions. Then

β ≤ γ =⇒ H(α|β) ≥ H(α|γ) .

More generally, if A1 ⊂ A2 are sub-sigma-algebras, then H(α|A1) ≥ H(α|A2).

Again, the statement is quite intuitive: the less prior information we have been given,
the more information we expect to gain when we receive the new information α. What
is counterintuitive, however, is that β ≤ γ does not by itself imply I(α|β) ≥ I(α|γ); the
inequality only holds for the expected values.

Proof of Lemma 5.10. Because β ≤ γ implies σ(β) ⊂ σ(γ), it suffices to prove
that, for any sub-sigma-algebras A1 ⊂ A2 and any A ∈ α,∫

X

m(A|A1) log m(A|A1) dm ≤
∫
X

m(A|A2) log m(A|A2) dm ,

which can be restated as∫
X

φ ◦ E(1A|A1) dm ≤
∫
X

φ ◦ E(1A|A2) dm ,

where φ(x) = x log x, 0 ≤ x ≤ 1 (0 log 0 = 0). The key observation is that φ is convex
and bounded. The conditional Jensen inequality (Theorem 3.7) thus applies, so

φ ◦ E(f |A1) ≤ E(φ ◦ f |A1)

holds for any integrable function f : X → [0, 1]. We choose f = E(1A|A2). Because
A1 ⊂ A2, E(f |A1) = E(E(1A|A2)|A1) = E(1A|A1). This yields

φ ◦ E(1A|A1) ≤ E(φ ◦ E(1A|A2)|A1)

Integrating both sides finishes the proof because of the identity
∫
X

E(g|A ) dm =
∫
X
g dm.
�
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3. Shannon–McMillan–Breiman theorem

In this section we formulate and prove a fundamental result in information theory,
known as the Shannon–McMillan–Breiman theorem. It resembles the Birkhoff ergodic
theorem, and in fact the proof relies on it. The result is thus also known as the ergodic
theorem of information theory.

A straightforward connection between information theory and ergodic theory arises as
follows. Let (X,B,m, T ) be a probability-preserving transformation. Recall that if A is
a sub-sigma-algebra of B, then T−1A = {T−1A : A ∈ A } is another sub-sigma-algebra.
Similarly, if α is a countable partition, then

T−1α = {T−1A : A ∈ α}
is another countable partition. Clearly T−1A and T−1α comprise information about the
future: x ∈ T−1A⇔ T (x) ∈ A. Recall from Exercise 3.14 the identity

E(f |A ) ◦ T = E(f ◦ T |T−1A ) ,

which has the intuitive interpretation that the future value of E(f |A ) equals the condi-
tional expectation of the future value of f given the future sub-sigma-algebra A . This
leads to a corresponding identity for the conditional information function, by observing
that f = 1A gives

m(A|A ) ◦ T = m(T−1A|T−1A ) .

Lemma 5.11. Let (X,B,m) be a probability space. If T is a measure-preserving trans-
formation, A a sub-sigma-algebra and β a countable partition, then

I(β|A ) ◦ T = I(T−1β|T−1A ) and H(β|A ) = H(T−1β|T−1A ) .

In particular, infer that a countable partition β has the same entropy as T−1β:

H(β) = H(T−1β) .

Exercise 5.12. Prove Lemma 5.11.

Let us introduce the following notations. If αn and An, n ≥ 1, are a sequence of
countable partitions and sub-sigma-algebras, respectively, then

n∨
i=1

αi = α1 ∨ · · · ∨ αn = {A1 ∩ · · · ∩ An : Ai ∈ αi , 1 ≤ i ≤ n}

and
n∨
i=1

Ai = A1 ∨ · · · ∨An = σ

(
n⋃
i=1

Ai

)
.

These are countable partitions and sub-sigma-algebras, respectively. In the latter case we
can also set n =∞. It is obvious that

σ

(
n∨
i=1

αi

)
=

n∨
i=1

σ(αi) .

When conditioning on a sigma-algebra generated by a countable partition, we use the
shorthand notation

I

(
β

∣∣∣∣∣
n∨
i=1

αi

)
= I

(
β

∣∣∣∣∣σ
(

n∨
i=1

αi

))
.

This also makes sense for n =∞.
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Definition 5.13. Let (X,B,m, T ) be a probability-preserving transformation and α a
countable partition with H(α) <∞. The number

h(T, α) = H

(
α

∣∣∣∣∣
∞∨
i=1

T−iα

)
is called the entropy of T with respect to α.

The next result is the promised ergodic theorem of information theory:

Theorem 5.14 (Shannon–McMillan–Breiman theorem). Let (X,B,m, T ) be a probability-
preserving transformation and α a countable partition of X satisfying H(α) <∞. Denote

f = I

(
α

∣∣∣∣∣
∞∨
i=1

T−iα

)
and by I the sub-sigma-algebra of almost invariant sets. Then

lim
n→∞

1

n
I

(
n−1∨
i=0

T−iα

)
= E(f |I ) ,

where the convergence takes place both almost surely and in the L1 norm. Moreover,

lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)
= h(T, α) .

In the ergodic case,
E(f |I ) = h(T, α) .

Let us pause to discuss the significance of the theorem to ergodic theory. In the ergodic
case — which is of the greatest importance — it states that, for a typical point x ∈
X, the value I(∨n−1

i=0 T
−iα)(x) = − log m((∨n−1

i=0 T
−iα)(x)) is arbitrarily close to nh(T, α),

provided n is large enough. Alternatively, the partition element A = (∨n−1
i=0 T

−iα)(x)
containing x has measure

m(A) ≈ e−nh(T,α) .

We can interpret this more dynamically, in terms of the trajectory of x: If Ai = α(T i(x)),
i ≥ 0, denotes the partition element of α which contains the point T i(x), then A =
A0 ∩ T−1A1 ∩ · · · ∩ T−n−1An−1 yields

m(A0 ∩ T−1A1 ∩ · · · ∩ T−n−1An−1) ≈ e−nh(T,α) .

Hence, the set of all of those points y ∈ X whose trajectories y, T (y), . . . , T n−1(y) up to
time n− 1 pass through the exact same sets A0, . . . , An−1 has measure ≈ e−nh(T,α). The
measure thus decreases exponentially in n. We are led to conclude that, typically, two
points starting off in the same element of the partition α end up in different partition
elements exponentially quickly under iterating the map T . How quickly this happens is
characterized by the entropy of T with respect to α, which of course depends on both the
partition and the map. Thus, we have a dynamical interpretation of h(T, α): the bigger
the entropy, the more efficiently the partition can distinguish between the trajectories of
distinct points.

[I Exercises on ppts here or later?]
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Concerning the condition H(α) <∞, recall that in the Birkhoff ergodic theorem the
function f : X → R has to be integrable, i.e., f ∈ L1(X,B,m). Analogously, in the
Shannon–McMillan–Breiman theorem, H(α) < ∞ is an integrability condition; it states
precisely that I(α) ∈ L1(X,B,m). It also implies the integrability of f = I(α|∨∞i=1T

−iα),
because H(α|A ) ≤ H(α|N ) = H(α) for any sub-sigma-algebra A .

The next two results are needed for the proof of Theorem 5.14. The proof of the first
one, which we omit, can be found in Parry [9]. The second one is a corollary of the first.

Lemma 5.15 (Chung’s lemma). Suppose that β is a countable partition satisfying
H(β) < ∞ and that A1 ⊂ A2 ⊂ · · · is an increasing sequence of sub-sigma-algebras.
Then ∫

X

sup
n≥1

I(β|An) dm ≤ H(β) + 1 .

Theorem 5.16. Suppose that β is a countable partition satisfying H(β) < ∞ and that
A1 ⊂ A2 ⊂ · · · is an increasing sequence of sub-sigma-algebras with An ↑ A . Then

lim
n→∞

I(β|An) = I(β|A )

almost everywhere and in the L1 norm. Moreover,

H(β|An) ↓ H(β|A ) .

Exercise 5.17. Prove Theorem 5.16.

We are now equipped to prove the Shannon–McMillan–Breiman theorem. The proof
may appear lengthy, but the ideas used are at this point very simple.

Proof of Theorem 5.14. Since H(α) <∞, Chung’s lemma implies that f is inte-
grable. Hence,

∫
X

E(f |I ) dm =
∫
X
f dm = H(α| ∨∞i=1 T

−iα) = h(T, α). The claim about
entropy follows from the one about the information function, because convergence in the
L1 norm implies convergence of integrals. If m is ergodic, I = N (mod m), which yields
E(f |I ) =

∫
X
f dm = h(T, α).

It remains to check that limn→∞
1
n
I(∨n−1

i=0 T
−iα) = E(f |I ). Observe that, for arbitrary

countable partitions, I(α∨β) = I(α)+I(β|α) and I(β)◦T = I(T−1β); the first one follows
from the basic identity with γ = N and the second from Lemma 5.11 with A = N .
Using these identities, we obtain

I

(
n−1∨
i=0

T−iα

)
= I

(
α ∨

n−1∨
i=1

T−iα

)
= I

(
α

∣∣∣∣∣
n−1∨
i=1

T−iα

)
+ I

(
n−2∨
i=0

T−iα

)
◦ T ,

because ∨n−1
i=1 T

−iα = T−1(∨n−2
i=0 T

−iα). Let us now write fn = I(α|∨ni=1T
−iα), n ≥ 0 (with

the understanding that f0 = I(α)). In the new notation, the identity above reads

I

(
n−1∨
i=0

T−iα

)
= fn−1 + I

(
n−2∨
i=0

T−iα

)
◦ T .

This is a recursion relation resulting in the expansion

I

(
n−1∨
i=0

T−iα

)
= fn−1 + fn−2 ◦ T + · · ·+ f0 ◦ T n−1 =

n−1∑
i=0

fn−1−i ◦ T i .
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The right side resembles a Birkhoff sum to which we would like to apply the Birkhoff
ergodic theorem. The problem is that there are several functions fi appearing in the sum.
The strategy is to show that 1

n

∑n−1
i=0 fn−1−i ◦ T i has the same limit as 1

n

∑n−1
i=0 f ◦ T i, to

which Birkhoff’s theorem does apply. More precisely, since∣∣∣∣∣ 1nI
(
n−1∨
i=0

T−iα

)
− E(f |I )

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n−1∑
i=0

f ◦ T i − E(f |I )

∣∣∣∣∣+
1

n

n−1∑
i=0

|fn−1−i − f | ◦ T i ,

where the first term on the right converges to zero almost everywhere and in the L1 norm,
it suffices to show that

lim sup
n→∞

1

n

n−1∑
i=0

gn−1−i ◦ T i = 0 (5.1)

almost everywhere and in the L1 norm, where, to simplify the notation, we have denoted
gn = |fn − f |, n ≥ 0.

Since σ(∨ni=1T
−iα) ↑ σ(∨∞i=1T

−iα), Theorem 5.16 implies that

lim
n→∞

gn = 0

almost everywhere and in the L1 norm. In particular,

lim sup
n→∞

1

n

n−1∑
i=0

∫
X

gn−1−i ◦ T i dm = lim sup
n→∞

1

n

n−1∑
i=0

∫
X

gn−1−i dm

= lim sup
n→∞

1

n

n−1∑
i=0

∫
X

gi dm = 0 .

Hence, (5.1) holds in L1, and it remains to prove that it also holds almost everywhere.

To prove almost sure convergence, observe that, for any m ∈ {0, 1, . . . , n− 1},

1

n

n−1∑
i=0

gn−1−i ◦ T i =
1

n

n−m−1∑
i=0

gn−1−i ◦ T i +
1

n

n−1∑
i=n−m

gn−1−i ◦ T i

≤ 1

n

n−m−1∑
i=0

Gm ◦ T i +
1

n

n−1∑
i=n−m

G0 ◦ T i ,

(5.2)

where

Gm = sup
n≥m

gn ≤ sup
n≥m

I

(
α

∣∣∣∣∣
n∨
i=1

T−iα

)
+ I

(
α

∣∣∣∣∣
∞∨
i=1

T−iα

)
.

Obviously G0 ≥ G1 ≥ · · · . Since limn→∞ gn = 0, we conclude that Gm ↓ 0 almost
everywhere, as m increases to ∞. What is more, G0 (and Gm, m ≥ 1) is integrable by
Lemma 5.15. In particular,

∑m−1
i=0 G0 ◦ T i is integrable, so the Birkhoff ergodic theorem

implies that

1

n

n−1∑
i=n−m

G0 ◦ T i =
n−m
n
· 1

n−m

(
m−1∑
i=0

G0 ◦ T i
)
◦ T n−m
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converges to zero almost everywhere as n → ∞; see Exercise 3.32. By (5.2), we are led
to conclude that

lim sup
n→∞

1

n

n−1∑
i=0

gn−1−i ◦ T i ≤ lim sup
n→∞

1

n

n−m−1∑
i=0

Gm ◦ T i = E(Gm|I ) ,

where Birkhoff’s theorem was used again. But m ≥ 0 is arbitrary; taking m→∞ proves
that the left side is zero because limm→∞ E(Gm|I ) = 0 by the monotone convergence
part in Theorem 3.7. �

4. Applications of the S–M–B theorem



APPENDIX A

Some measure and integration theory

For convenience, we recall routinely used terminology and facts from measure theory
and Lebesgue’s integration theory.

1. Positive, signed and complex measures

Let X be a set. A sigma-algebra B on X is a collection of subsets of X satisfying
the following properties: (1) ∅, X ∈ B; (2) if A ∈ B, then Ac = X \ A ∈ B; and
(3) if Ai ∈ B, i ∈ N, then ∪i∈NAi ∈ B. Thus, a sigma-algebra is closed under taking
complements and countable unions of its elements. Of course, it is then also closed under
countable intersections. The elements A ∈ B are called measurable sets and (X,B) is
called a measurable space.

A measure m on a sigma-algebra B (or on measurable space (X,B)) is a function
B → [0,∞] satisfying the following properties: (1) m(∅) = 0; (2) If Ai ∈ B, i ∈ N, are
disjoint (Ai ∩ Aj = ∅ for i 6= j), then m(∪i∈NAi) =

∑
i∈N m(Ai). The last property is

called countable additivity. Then (X,B,m) is called a measure space. Since m(A) ≥ 0
for each A ∈ B, measures defined this way are also called positive measures. Note that
m(A) =∞ is allowed for a measure. We say that a measure is finite, if m(X) <∞ (and
hence m(A) < ∞ for all A ∈ B), and sigma-finite if X can be written as a countable
union ∪i∈NXi of disjoint sets Xi ∈ B such that m(Xi) <∞ for each i.

Complex measures m : B → C and real measures m : B → R satisfy similar
properties as measures, but always take finite values by definition. A real measure is a
complex measure, of course. Real measures are also called signed measures, which is
our choice. A positive measure is a probability measure if m(X) = 1, in which case
(X,B,m) is a probability space. We use the following notations:

M(X,B) = set of (positive) finite measures on (X,B)

P(X,B) = set of probability measures on (X,B)

Ms(X,B) = set of signed measures on (X,B)

Mc(X,B) = set of complex measures on (X,B)

Often we writeM instead ofM(X,B), and so on, when there is no danger of confusion.

When X is a compact metric space (more generally, a topological space), B is al-
ways the Borel sigma-algebra, the smallest sigma-algebra containing the open sets. A
measure — positive, signed or complex — on B is then called a Borel measure. Thus,
M(X,B) is the set of positive finite Borel measures, and so on. The elements A ∈ B are
called Borel sets.

71
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Observe thatMs is a (real) vector space. Every signed measure m ∈ Ms admits the
splitting

m = m+ −m−

into its positive part m+ ∈M and negative part m− ∈M, both of which are finite. This
allows to define a norm, the total variation norm

‖m‖TV = m+(X) + m−(X) , (A.1)

which turns Ms into a normed space. Likewise, a total variation norm can be defined
on the vector spaceMc. It is a relevant fact for us that P is a convex subset (but not a
linear subspace) ofMs andMc.

2. Monotone class theorem and π–λ lemma

Many properties in measure theory are difficult to check directly for every element of
a sigma-algebra, but considerably easier to check for a subfamily of the sigma-algebra.
If this subfamily generates the sigma-algebra, then the property in question can often
be extended to the full sigma-algebra with the aid of the monotone class theorem or the
π–λ lemma. The two are closely related, and choosing one over the other in practice is a
matter of convenience.

Let X be a set. A collection M of its subsets is called a monotone class, if it
satisfies the following properties: (1) X ∈M ; (2) M is closed under countable unions of
increasing sets: if A1 ⊂ A2 ⊂ · · · where Ai ∈M , then ∪i≥1Ai ∈M ; and (3) M is closed
under countable intersections of decreasing sets: if A1 ⊃ A2 ⊃ · · · where Ai ∈ M , then
∩i≥1Ai ∈M .

The intersection of an arbitrary collection of monotone classes is a monotone class
and the family of all subsets of X is a monotone class. Therefore, given any collection
A of subsets, the smallest monotone class containing A is well defined. It is called the
monotone class generated by A , and we denote it by M (A ).

A collection A of subsets is called an algebra, if it satisfies the following properties:
(1) ∅, X ∈ A ; (2) If A ∈ A , then Ac = X \ A ∈ A ; (3) If A,B ∈ A , then A ∪ B ∈ A .
Thus, an algebra is closed under taking complements and finite unions (and intersections)
of its elements.

Theorem A.1 (Monotone class theorem). Let A be an algebra of subsets of X. Then
M (A ) = σ(A ).

In other words, the monotone class generated by an algebra coincides with the sigma-
algebra generated by the algebra. In applications one wishes to demonstrate that some
property P holds for all elements of a sigma-algebra B. One approach proceeds through
the following steps:

(1) Identify a generating algebra A ⊂ B = σ(A ) such that property P holds for
all A ∈ A .

(2) Show that M = {A ⊂ X : A has property P} is a monotone class.
(3) Note that A ⊂M . This implies M (A ) ⊂M .
(4) By the monotone class theorem, B = σ(A ) ⊂ M , so property P holds for

all A ∈ B.
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A collection of subsets P is called a π-system, if (1) P 6= ∅ and (2) if A,B ∈ P,
then A ∩B ∈P. (The letter π refers to the word product.)

A collection of subset L is called a λ-system, if it satisfies the following properties:
(1) X ∈ L ; (2) Ac ∈ L for all A ∈ L ; and (3) L is closed under countable unions of
disjoint sets: if Ai ∈ L , i ∈ N, are disjoint, then ∪i∈NAi ∈ L . (The letter λ refers to the
word limit.)

Theorem A.2 (π–λ lemma). Let P be a π-system and L a λ-system with P ⊂ L .
Then σ(P) ⊂ L .

In other words, if a π-system is contained in a λ-system, then also the sigma-algebra
generated by the π-system is contained in the λ-system. Another approach to prove that
every element of a sigma-algebra B has some property P is the following:

(1) Identify a generating π-system P ⊂ B = σ(P) such that property P holds for
all A ∈P.

(2) Show that L = {A ⊂ X : A has property P} is a λ-system.
(3) Note that P ⊂ L .
(4) By the π–λ lemma, B = σ(P) ⊂ L , so property P holds for all A ∈ B.

3. Monotone and dominated convergence

The following theorems are needed for interchanging the order of integration and
taking a limit, in order to conclude that limn→∞

∫
X
fn dm =

∫
X

limn→∞ fn dm under
suitable conditions.

Theorem A.3 (Monotone convergence theorem). Let fn : X → [0,∞], n ≥ 1, be a
non-decreasing sequence of measurable functions. Then the pointwise limit f : X →
[0,∞] : f(x) = limn→∞ fn(x) is a measurable function and

lim
n→∞

∫
X

fn dm =

∫
X

f dm .

The monotone convergence theorem is often used in conjunction with the fact that a
measurable function f ≥ 0 is the pointwise limit of a non-decreasing sequence of simple
functions, finite linear combinations sn =

∑m(n)
j=1 αn,j1En,j

, where each αn,j is a nonnegative
constant and En,j is a measurable set.1 Thus it suffices to prove a statement about integrals
for all indicator functions: it extends to simple functions by linearity and to nonnegative
measurable functions by Theorem A.3. After this, one may again appeal to linearity and
extend the result to functions f ∈ L1(X,B,m) by splitting f = f+ − f− into its positive
and negative part.

When the sequence fn is not monotone but converges pointwise, one can often domi-
nate it by an absolutely integrable function g ≥ |fn|, which again permits interchanging
a limit and an integral:

Theorem A.4 (Dominated convergence theorem). Let fn : X → C, n ≥ 1, be a sequence
of measurable functions having a pointwise limit f almost everywhere. If there exists a

1In fact, the Lebesgue integral of a measurable function f ≥ 0 can be defined as
∫
f dm =

sup0≤s≤f
∫
sdm, where the supremum is taken over all simple functions satisfying 0 ≤ s ≤ f .
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function g ∈ L1(X,B,m) with supn≥1 |fn| ≤ g almost everywhere, then f is integrable
and

lim
n→∞

∫
X

fn dm =

∫
X

f dm .

A dominating integrable function excludes sequences “escaping to infinity”. For ex-
ample, if fn = 1[n,n+1], then limn→∞ fn = 0 but

∫
X
fn dm = 1 for all n ≥ 1. It also

excludes the following “blowup”: if fn = n1[0, 1
n

], then limn→∞ fn = 0 except at 0 but again∫
X
fn dm = 1 for all n ≥ 1.

The dominated convergence theorem has a useful corollary for finite measures:

Theorem A.5 (Bounded convergence theorem). Let the measure m be finite: m(X) <∞.
Let fn : X → C, n ≥ 1, be a sequence of measurable functions having a pointwise limit
f almost everywhere. If there exists M ∈ [0,∞) such that supn≥1 |fn| ≤ M almost
everywhere, then f is measurable and |f | ≤M almost everywhere (hence integrable) and

lim
n→∞

∫
X

fn dm =

∫
X

f dm .

4. Radon–Nikodym theorem

Theorem A.6 (Radon–Nikodym theorem). Let m be a sigma-finite measure and µ a
finite complex measure, which is absolutely continuous with respect to m. Then there
exists a unique2 function h ∈ L1(X,B,m) such that

µ(A) =

∫
A

h dm , A ∈ B .

The function h is called the Radon-Nikodym derivative (or density) of µ with respect to
m, and is denoted by dµ

dm
.

2Elements of Lp spaces are equivalence classes of functions, so uniqueness means uniqueness of the
equivalence class. Any two representatives of the equivalence class agree almost everywhere.



APPENDIX B

Some functional analysis

We recall some facts from functional analysis, which will be used throughout the
lectures. Many of the results could be generalized and are stated without proofs. Both
the generalizations and their proofs can be found in standard textbooks such as [13,14,3].

Let V and V ′ be normed spaces over the field K = R or K = C. A linear operator
L : V → V ′ is continuous if and only if it is bounded, meaning that the operator norm

‖L‖ = sup
v∈V \{0}

‖Lv‖
‖v‖

is finite. (Here the norms are the ones of the appropriate spaces.) In the special case
V ′ = K we say that L is a linear functional. The dual space V ∗ of V is the normed
space consisting of all continuous linear functionals L : V → K, equipped with the
operator norm.

The kernel and image of a linear operator L : V → V ′ are the subspaces

kerL = {v ∈ V : Lv = 0}
and

imL = {v′ : Lv = v′ for some v′ ∈ V } ,
respectively. If L is continuous, kerL = L−1{0} is closed.

Let V be a vector space and E and F two subspaces. The sum of E and F is the
subspace E + F = {e + f : e ∈ E, f ∈ F}. Each element v ∈ E + F has a unique
representation v = e + f with e ∈ E and f ∈ F if and only if E ∩ F = {0}. In this case
E + F is called a direct sum. If V is a normed space, a direct sum is denoted by

E ⊕ F
if the subspaces are closed. If V is an inner product space and the closed subspaces are
orthogonal, E ⊥ F , we write

E ⊕⊥ F
for the direct sum.

1. Projection operators

A linear projection operator P : V → V is one that satisfies P 2 = P . On some
occasions we will benefit from the following result:

Lemma B.1. If V is a vector space and P : V → V a linear projection operator, then

V = kerP + imP and kerP ∩ imP = {0} .
In addition, I − P is a linear projection operator, and the relations

imP = ker (I − P ) and kerP = im (I − P )
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hold.

If V is a normed space and P : V → V is a continuous linear projection, then kerP
and imP are moreover closed subspaces:

V = kerP ⊕ imP .

If H is a Hilbert space and P : H → H is a self-adjoint (meaning P = P ∗) continuous
linear projection, then kerP and imP are moreover orthogonal complements:

H = kerP ⊕⊥ imP .

Thus, P and I − P are the orthogonal projections onto the closed subspaces imP and
kerP , respectively.

Proof. Trivially kerP ⊂ im (I − P ), because v ∈ kerP implies v = (I − P )v ∈
im (I − P ). The identity P 2 = P is equivalent to P (I − P ) = 0, which means that
im (I − P ) ⊂ kerP . Thus kerP = im (I − P ); reversing the roles of P and I − P we
also get imP = ker (I − P ). Take an arbitrary v ∈ V . Then v = (I − P )v + Pv where
(I − P )v ∈ kerP and Pv ∈ imP . Thus V = kerP + imP . If v ∈ kerP ∩ imP , then
v = Pw for some w ∈ V with 0 = Pv = P 2w = Pw = v. Hence, kerP ∩ imP = {0}.

If P is continuous, then kerP = P−1{0} is closed. Since also I − P is continuous,
imP = ker(I − P ) is closed as well. Thus, V = kerP ⊕ imP .

If P is self-adjoint, the claim is that kerP and imP are orthogonal complements.
Let x ∈ kerP and y ∈ imP , so that Px = 0 and y = Pz for some z ∈ H. Then
〈x, y〉 = 〈x, Px〉 = 〈Px, z〉 = 0. Hence, kerP ⊥ imP . Since H = kerP ⊕ imP , the proof
is complete. �

2. Extension of continuous linear functionals

It is occasionally necessary to extend a continuous linear functional L : E → K from a
subspace E of a normed space V to a continuous linear functional ` : V → K on the entire
space. By an extension it is meant that L and ` coincide on the subspace E: Le = `e
for all e ∈ E. The Hahn–Banach extension theorem guarantees that such an extension is
always possible, in such a way that L and ` have the same operator norm.

Theorem B.2 (Hahn–Banach extension theorem). Let V be a normed space and E ⊂ V
an arbitrary subspace. If L : E → K is a countinuous linear functional, there exists an
extension ` : V → K such that the operator norms ‖`‖V→K = ‖L‖E→K.

3. Identifying subspaces using continuous linear functionals

On a few occasions we need to determine whether two closed subspaces E ⊂ F ⊂ V
actually satisfy E = F . To this end, the following lemma will be useful:

Lemma B.3. Suppose E ⊂ F are subspaces of a normed space V . Let L : V → K be an
arbitrary continuous linear functional which vanishes on E (E ⊂ kerL⇔ Le = 0 ∀e ∈ E).
If L vanishes also on F , then Ē = F̄ .

Note that in the lemma it is necessary to consider all functionals vanishing on E.
Secondly, the reason the closures of E and F appear is that, in a sense, continuous linear
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functionals cannot distinguish between closed and non-closed subspaces: if L vanishes on
a subspace E, then it also vanishes on Ē by continuity.

Proof of Lemma B.3. Trivially Ē ⊂ F̄ , so we are left with proving the opposite
inclusion. If F̄ 6⊂ Ē, then there exists a continuous linear functional L which vanishes
on Ē but does not vanish on all of F̄ . (We will prove this in the paragraph below.)
Equivalently, L vanishes on E but not on all of F . If such a functional does not exists,
then F̄ ⊂ Ē. This is what the lemma states.

Let us finally prove the existence of L as claimed above. If F̄ is strictly larger than Ē,
fix f0 ∈ F̄ \ Ē. For each v ∈ span{f0} ⊕ Ē, there exist unique t(v) ∈ K and e(v) ∈ Ē
such that v = t(v)f0 + e(v). It is clear that t : span{f0} ⊕ Ē → K is a linear functional.
Obviously t vanishes on Ē. Moreover, t is continuous, because it is continuous at 0: If
vn → 0, then t(vn)f0 + e(vn) → 0, which is only possible if t(vn) → 0 (and e(vn) → 0).
By the Hahn–Banach extension theorem (Theorem B.2), t extends to a continuous linear
functional L : V → K on the entire normed space V in such a way that L and t agree on
span{f0} ⊕ Ē. �

4. Compact convex subsets of locally convex spaces

In this section we recall facts concerning compact convex sets of locally convex spaces.
We also recall all necessary definitions. For further background on locally convex spaces,
we refer the reader to [14]; the results on convex sets below are part of what is known as
Choquet theory, for which [11] is a good reference.

Let V be a vector space. A set K ⊂ V is convex, if the convex combination tu+ (1−
t)v ∈ K for all t ∈ [0, 1] and all u, v ∈ K. In other words, K contains the entire chord
connecting two arbitrary points of K. The convex hull of a set E ⊂ V is the smallest
convex set K ⊂ V containting E. (This exists and is unique, because V is convex and
the intersection of convex sets is convex.) The closed convex hull is the closure of the
convex hull. A point e ∈ K of a convex set K is called an extreme point, if it cannot
be represented as the convex combination of two distinct points of K. For example, the
extreme points of a closed interval are its end points, the extreme points of a triangle are
its vertices and the extreme points of a disk are its boundary points.

A topological vector space V is a vector space equipped with a topology which
makes (1) every point a closed set and (2) the operations of addition (V × V → V :
(v1, v2) → v1 + v2) and scalar multiplication (K × V → V : (α, v) 7→ αv) continuous. A
locally convex space is a topological vector space in which any neighborhood U of any
point v ∈ V contains a convex neighborhood K: v ∈ K ⊂ U . Normed spaces are obvious
examples of locally convex spaces, the open balls being the convex neighborhoods.

In the text we will need to find a solution to an equation of the form S(v) = v where S
is a continuous map mapping a compact convex subset of a locally convex space into itself.
Such a solution is called a fixed point of S. We will implement the following generalization
of the classical Brouwer fixed point theorem from Euclidean spaces to arbitrary locally
convex spaces.

Theorem B.4 (Schauder–Tychonoff fixed point theorem). Let V be a locally convex
space. If K ⊂ V is a nonempty compact convex set and S : K → K is a continuous map,
then S has a fixed point in K. That is, there exists v ∈ K such that S(v) = v.
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Note that S need not be linear in the theorem.

The next theorem establishes a relationship between a compact convex set and its
extreme points.

Theorem B.5 (Krein–Milman theorem). Let V be a locally convex space. If K ⊂ V is
a compact convex set and E the set of its extreme points, then K is exactly the closed
convex hull of E.

A trivial example is the closed unit interval K = [0, 1] with E = {0, 1}; the closed
convex hull of E = K. The theorem guarantees that there the set of extreme points is
always sufficiently large so that its closed convex hull coincides with the compact convex
set. In particular, the set of extreme points cannot be empty (unless K is empty).

In fact, the Krein–Milman theorem can be restated as follows: under the same as-
sumptions, given an arbitrary point v ∈ K, there exists a Borel probability measure λ
supported on the closure Ē (which means that λ(K \ Ē) = 0) such that v is the barycen-
ter (a generalized convex combination)

v =

∫
Ē

e dλ(e) .

Therefore, the following theorem under the additional assumption that K be metrizable
is sharper, as it states that an arbitrary point of a compact convex set is the barycenter
of its extreme points — not just of points in the closure Ē:

Theorem B.6 (Choquet theorem). Let V be a locally convex space. If K ⊂ V is a
metrizable compact convex set, E the set of its extreme points and v an arbitrary point
in K, then E is a Borel set 1 and there exists a Borel probability measure λ supported
on E (meaning λ(K \ E) = 0) such that

v =

∫
E

e dλ(e) .

To shed light on the statement, consider the compact convex set [0, 1]2 ⊂ R2. The
set of its extreme points is E = {e1 = (0, 0), e2 = (0, 1), e3 = (1, 0), e4 = (1, 1)}. Say,
for the center v = (1

2
, 1

2
) we have v = 1

2
e1 + 1

2
e4 =

∫
E
e dλ(e) where λ = 1

2
(δe1 + δe4).

Likewise, we also have v = 1
2
e2 + 1

2
e3 =

∫
E
e dλ′(e) where λ′ = 1

2
(δe2 + δe3). This shows

that the measure λ does not have to be unique, because the convex combination required
to represent v is not unique, even in finite dimensions. (It is unique when K is a finite
dimensional simplex, such as a triangle). In finite dimensions, d < ∞, the measure-
theoretic formulation is superfluous, because a finite convex combination of ≤ d + 1
extreme points is always sufficient (Carathéodory’s theorem) — although the combination
obviously depends on v and although E may be uncountable (as in the case of a disk). In
infinite dimensions, which is the case of interest to us, the formulation given in terms of
barycenters and measures is necessary.

1Without metrizability, E is not generally a Borel set in the infinite dimensional case. The Choquet–
Bishop–de Leeuw theorem is a generalization of the Choquet theorem to the non-metrizable setting.
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5. Representation of functionals as measures

Note that if (X,B,m) is a measure space, then the relation

Lf =

∫
X

f dm , f ∈ L1(X,B,m) ,

defines a linear functional L : L1(X,B,m)→ C. Positivity of the measure (m(A) ≥ 0 for
all A ∈ B) is equivalent to positivity of the functional (f ≥ 0⇒ Lf ≥ 0). In the positive
case, m is a probability measure (m(X) = 1) if and only if L1 = 1. The following theorem
is a highly useful converse of our observation for functionals of continuous functions.

Theorem B.7 (Riesz–Markov–Kakutani representation theorem). Let X be a compact
metric space and B its Borel sigma-algebra. If L : C(X) → C is a positive linear
functional, there exists a unique positive Borel measure m on (X,B) such that

Lf =

∫
X

f dm , f ∈ C(X) .

Moreover, the following are equivalent:

(1) L1 <∞,
(2) m is a finite measure,
(3) L is continuous.

The last part of the theorem follows immediately from

|Lf | ≤ ‖f‖∞m(X) = ‖f‖∞ L1 ≤ ‖f‖∞ ‖L‖ .

Exercise B.8. Fix x ∈ X and define the functional L : C(X)→ C : Lf = f(x). Observe
that L is positive and linear. Identify the Borel measure m representing L in Theorem B.7.

[Hint: Start with indicator functions.]

The Riesz representation theorem yields a one-to-one correspondence (bijection)
between continuous positive linear functionals C(X) → C and finite positive Borel mea-
sures on X. In fact, the correspondence is an isometric isomorphism when the linear
functionals are equipped with the operator norm ‖L‖ and the measures with the total
variation norm ‖m‖TV in (A.1). There are alternate versions of the theorem yielding
similarly the one-to-one correspondences

Ms ↔ CR(X)∗ and Mc ↔ C(X)∗ . (B.1)

Here CR(X) is the space of real-valued continuous functions and CR(X)∗ is the space of
continuous linear functionals CR(X)→ R. This is immediate, if one accepts the fact that
any L ∈ C(X)∗ can be decomposed into L = L1−L2 + iL3− iL4, where each Li ∈ C(X)∗

is positive.

In Section 3 of Appendix A, we discussed conditions allowing to take a limit inside of
an integral, so that limn→∞

∫
X
fn dm =

∫
X

limn→∞ fn dm. In view of the representation
theorem above, one is immediately led to ask under what conditions

lim
n→∞

Lfn = L
(

lim
n→∞

fn

)
(B.2)

holds true. There is a subtle point to be made here. If fn converges to f in C(X) —
that is, uniformly — then (B.2) holds true if L is continuous. However, we will encounter
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situations where a similar conclusion is required when the sequence converges pointwise.
Fortunately, we can now combine the dominated convergence theorem (Theorem A.4
or A.5) with Theorem B.7, and obtain an analogous convergence result for functionals:

Theorem B.9 (Dominated convergence theorem for linear functionals). Let X be a com-
pact Hausdorff space and fn ∈ C(X), n ≥ 1, a sequence of functions converging pointwise
to f ∈ C(X). If supn≥1 ‖fn‖∞ < ∞, then (B.2) holds for all continuous linear function-
als L : C(X)→ C.

Proof. Assuming L is positive, there exists a Borel measure m on (X,B) such that
Lh =

∫
X
h dm for all h ∈ C(X). Since supn≥1 |fn| < ∞, the dominated (or bounded)

convergence theorem for integrals implies limn→∞ Lfn = limn→∞
∫
X
fn dm =

∫
X
f dm =

L(f). A general continuous linear functional L : C(X) → C can be written as L1 −
L−2iL3 − iL4, where each of the linear functionals on the right side is continuous and
positive. The preceding argument applies to each of them separately, so the proof is
complete. �

There is also a representation theorem for linear functionals acting on Lp spaces:

Theorem B.10 (Representation of continuous linear functionals on Lp.). Let (X,B,m)
be a measure space, where m is sigma-finite and positive. Let p ∈ [1,∞) and q ∈ (1,∞]
be such that 1

p
+ 1

q
= 1. For any continuous linear functional L : Lp(X,B,m)→ C, there

exists a unique function h ∈ Lq(X,B,m) such that

Lf =

∫
X

f h dm , f ∈ Lp(X,B,m) .

Moreover, ‖L‖ = ‖h‖q.

6. Weak topology and convergence of measures

In this section X is a compact metric space. The dual space C(X)∗ of C(X) is the
space of all continuous linear functional L : C(X)→ C equipped with the operator norm

‖L‖ = sup
f∈C(X)\{0}

|Lf |
‖f‖∞

.

We will begin by introducing a weak notion of convergence for sequences of functionals
Ln ∈ C(X)∗, because this will immediately yield a useful notion of convergence for se-
quences of finite measures mn with the aid of the Riesz–Markov–Kakutani representation
theorem (Theorem B.7).

In the operator norm topology, a sequence of continuous linear functionals Ln, n ≥ 1,
converges if there exists a continuous linear functional L such that limn→0 ‖Ln−L‖∗ = 0.
In other words, given any ε > 0, there exists N ≥ 1 such that |Lnf − Lf | ≤ ε‖f‖
holds for all f ∈ C(X) if n ≥ N . For many purposes this notion of convergence is too
strong. To understand this, consider the example where X = [0, 1] and Ln ∈ C([0, 1])∗

is the evaluation functional Lnf = f( 1
n
). One is tempted to think that Ln converges to

L ∈ C([0, 1])∗ : Lf = f(0) because Lnf → f(0) for any fixed f ∈ C([0, 1]). But this
is not the case: if fn ∈ C([0, 1]) satisfies fn(0) = 0, fn( 1

n
) = 1, fn ≥ 0 and ‖fn‖∞ =

supx∈X |fn(x)| = 1, then |Lnfn − Lfn| = 1 = ‖fn‖∞. Hence ‖Ln − L‖ ≥ 1 for all n ≥ 1.
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A remedy to the preceding ailment would be to use a weaker topology on C(X)∗, in the
sense of which Ln → L provided that Lnf → Lf for all f ∈ C(X). This is accomplished by
endowing C(X)∗ with the weakest topology such that the map Ef : C(X)∗ → C : L 7→ Lf
is continuous for every f ∈ C(X). This is called the topology of pointwise convergence,
or the weak-* topology of linear functionals (pronounced “weak star topology”). If
a sequence converges in this topology, which is referred to as weak-* convergence of
linear functionals, we write

Ln
w∗→ L or w∗- lim

n→∞
Ln = L .

Since each Ef is continuous, we see that Ln
w∗→ L implies Lnf → Lf for all f ∈ C(X).

The implication can be reversed:

Fact: The weak-* topology is metrizable on any ball Br = {L ∈ C(X)∗ : ‖L‖ ≤ r}. A
metric is given by d(L1, L2) =

∑
i≥1 2−i|L1fi − L2fi|, where {fi}i≥1 is a countable bounded

subset of C(X).2

Suppose Lnf → Lf for all f ∈ C(X). Then L and Ln, n ≥ 1, are in Br for some r > 0.3
On Br, the weak-* topology is metrizable by d. But d(Ln, L) =

∑
i≥1 2−i|Lnfi − Lfi| → 0,

so Ln
w∗→ L. In conclusion,

Ln
w∗→ L ⇐⇒ Lnf → Lf , f ∈ C(X) .

For instance, in the earlier example Ln(f) = f( 1
n
)→ f(0) = L(f) for all f ∈ C([0, 1]);

in other words, convergence does take place in the weak-* topology, Ln
w∗→ L.

We now turn to the convergence of measures. Recall that the Riesz–Markov–Kakutani
representation theorem (Theorem B.7) establishes a one-to-one correspondence between
functionals and measures: the map Φ : Mc → C(X)∗, where Φ(m) is the functional
Φ(m)(f) =

∫
X
f dm, is a bijection. The weak-* topology on C(X)∗ induces a topology

on Mc, which turns Φ into a homeomorphism.4 Recalling the definition of the weak-*
topology on C(X)∗, the induced topology onMc — called the weak topology of mea-
sures — is thus the weakest topology such that the map Mc 7→ C : m 7→

∫
X
f dm is

continuous for all f ∈ C(X), and it is metrizable on subsets bounded in the total varia-
tion norm (see remark below (A.1)). What is of most importance to us is the notion of
convergence it yields for sequences: the measures mn converge weakly to m, written
mn ⇒ m, if and only if the corresponding functionals converge in the weak-* sense.5 In
other words,

mn ⇒ m ⇐⇒
∫
X

f dmn →
∫
X

f dm ∀ f ∈ C(X) .

2This is so, because the normed space C(X) is separable: Let {fi}i≥1 be a countable dense subset of
the unit ball {f ∈ C(X) : ‖f‖∞ ≤ 1} of C(X). Then d(L1, L2) ≤ ‖L1 − L2‖ < ∞, and it can be easily
checked that d is a metric on the set C(X)∗. In fact, the topology induced by this metric coincides with
the weak-* topology on any ball Br (but not on the entire C(X)∗).

3This follows from the uniform boundedness principle, since C(X) is a Banach space.
4If Φ : X → Y is a map and Y is a topological space, the topology on X induced by Φ consists of

the preimages Φ−1U of open sets of Y . Then Φ is continuous. In case Φ is a bijection, it is also open,
and therefore a homeomorphism. Indeed, Φ(V ) = U is open in Y for any open set V = Φ−1U in X.

5Analysis oriented mathematicians use the term “weak-* convergence” also in the setting of Borel
measures, while the term “weak convergence” is favored by probabilists.
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Weak convergence is typically the satisfactory notion of convergence for measures.
For instance, coming back to the earlier example, we have Lnf =

∫
[0,1]

f dδ 1
n
and Lf =∫

[0,1]
f dδ0. Here δx denotes the Borel probability measure with its entire mass at the point

x ∈ [0, 1], that is, δx(A) = 1A(x). The above discussion thus amounts to the statement
that δ 1

n
⇒ δ0 as n→∞; the point mass at 1

n
converges weakly to the point mass at 0.

Let us briefly mention that requiring mn(A)→ m(A) for all measurable sets A results
in a stronger notion of convergence, which is usually too strong. For example, δn does not
converge to δ0 in this strong sense, which can be seen by taking A = {0}. The failure to
converge in this sense comes from the boundary set ∂A having a nonzero measure with
respect to the limit δ0, and this is a general phenomenon. In fact, the weak convergence
mn ⇒ m is equivalent to the statement that mn(A)→ m(A) for all measurable sets such
that m(∂A) = 0. Such sets are called “continuity sets of m”. Finally, convergence in the
total variation norm, ‖mn − m‖TV → 0, is an even stronger notion, and corresponds to
convergence of linear functionals in the operator norm.

We chose to work with complex and signed measures instead of just finite positive
measures becauseMc andMs are vector spaces. What is more, the following holds:

Lemma B.11. Equipped with the weak topology of measures, Mc and Ms are locally
convex spaces.

Sketch of proof. Since C(X) is a normed space, its dual C(X)∗ is a locally convex
space in the weak-* topology. The latter induces a locally convex topology onMc, because
the linear homeomorphism Φ maps neighborhoods to neighborhoods and convex sets to
convex sets. The case of signed measures is similar. �

Next, we present a lemma which states that norm-bounded sets of measures are (rel-
atively sequentially) compact in the weak topology of measures. In our application the
measures will be positive, actually probability measures, so we restrict the formulation to
that case. Note that ‖m‖TV = m(X) for positive measures.

Lemma B.12. Let X be a compact metric space and mn ∈ M, n ≥ 1, a sequence of
positive Borel measures on (X,B) which is bounded: supn≥1 mn(X) < ∞. Then there is
a subsequence mnk

, k ≥ 1, converging weakly to a limit m ∈M.

Alternatively, the lemma can be stated as follows: if Ln : X → C, n ≥ 1, is a bounded
sequence (supn≥1 ‖Ln‖ <∞) of continuous positive linear functionals, then it has a weak-*
convergent subsequence Lnk

, k ≥ 1. This is a consequence of the Banach–Alaoglu theorem
stating that a norm-closed ball of the dual space of a normed space is compact in the
weak-* topology, but we have decided to give a direct proof.

Proof of Lemma B.12. We need to show that there exist a subsequence mnk
, k ≥ 1,

and a Borel measure m such that limk→∞
∫
X
f dmnk

=
∫
X
f dm for all f ∈ C(X). The

proof relies on the fact that, for a compact metric space X, the Banach space C(X) is
separable, meaning that it has a countable dense set fk ∈ C(X), k ≥ 1, and proceeds by
a familiar diagonalization argument.

Since the sequence
∫
X
f1 dmn ∈ C, n ≥ 1, is bounded, it has a convergent subsequence

with a limit c(f1) ∈ C. We can express this as follows: there exists N1 ⊂ N such that
limn→∞, n∈N1

∫
X
f1 dmn = c(f1). We repeat the procedure for f2, obtaining that there



6. WEAK TOPOLOGY AND CONVERGENCE OF MEASURES 83

exists N2 ⊂ N1 such that limn→∞, n∈N2

∫
X
f2 dmn = c(f2) ∈ C. Repeating this procedure

over and over, we produce a nested sequence of index sets N ⊃ N1 ⊃ N2 ⊃ · · · such that
limn→∞, n∈Nk

∫
X
fk dmn = c(fk) ∈ C for each k ≥ 1. Finally, we form one more index setN

consisting of n1 < n2 < · · · in such a way that nk ∈ Nk for each k ≥ 1. Since the sets Nk
are nested, we have actually shown that limn→∞,n∈N

∫
X
fk dmn = c(fk) for all k ≥ 1. Since

the functions fk form a dense set in C(K), it follows that limn→∞, n∈N
∫
X
f dmn = c(f) ∈ C

for an arbitrary f ∈ C(K). We leave it to the reader to check that c : C(K) → C is a
continuous positive linear functional. By Theorem B.7, there exists a finite positive Borel
measure m such that c(f) =

∫
X
f dm for all f ∈ C(X). �
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