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1 Stochastic calculus with Hermite polynomials

Proposition 1. The transition probability of the Wiener process admits the expansion
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where the hn’s are Hermite polynomials
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Proof. Consider the Taylor expansion of the transition probability as a function of y at y = 0:
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Let us postulate for the n-th order of the Taylor expansion the form

yn

n!

dn

dzn

∣∣∣∣
z=0

e−
(x−z)2

2 t

√
2π t

:=
e−

x2

2 t

√
2π t

(y
t

)n
hn (x, t) (3)

We will show that the hn’s in 3 are exactly the Hermite polynomials defined in 1. So, let us start by

manipulating the left hand side of 3:
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where ξ is a random variable distributing according to Nt(z − x) (as a function of z). In other words,

we are just rewriting Nt(z − x) as the anti-Fourier transform of its characteristic function, which is by

definition the Fourier transform of Nt(z − x).

We know that

E(eipξ) = exp
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2
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}
= eipx−p

2t/2 (5)
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hence we get
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From the last equation we can conclude that indeed

hn (x , t) =
(−t)n

n!
e
x2

2 t
dn

dxn
e−

x2

2 t (7)

Other two important properties of the Hermite polynomials are stated in the following proposition.

Proposition 2. (i) The hn’s satisfy the following partial differential equation

(x ∂x + 2 t∂t)hn(x , t) = nhn(x , t)

(ii) The expected value of an Hermite polynomial having for argument a Wiener process starting at x is

Ehn (wt + x , t) =
xn
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Proof. (i) It is readily verified by performing the derivatives.

(ii) From the definition of expected value we have

Ehn (wt + x , t) :=
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Iterating the integrations by parts one gets

Ehn (wt + x , t) =
xn

n!
(10)

In order to see that xn/n! = hn(x, 0) = limt→0 hn(x, t), we notice that the leading term in t−1 of

∂nx e
−x2/2t is e−x
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The last proposition shows that the expectation value of the Hermite polynomials is conserved. We

can see this fact from a different perspective, namely as a consequence of the following proposition.
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Proposition 3. The differential of Hermite polynomials along a realization of the Wiener process is

dhn(wt, t) = dwt∂wthn(wt, t)

where the differential on the right hand side is an Ito differential.

Proof. By Ito lemma we have
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as each of these multiply positive definite terms of different order in y.

Now we can easily recover 8: consider

hn(wt + x, t) = hn(x, 0) +
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From the property of the Ito integral we get
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2 Recursion relation over the Wiener process

Proposition 4. Stochastic integrals over Hermite polynomials satisfy the simple recursion relation∫ t
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Proof. Consider the exponential process:
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Now consider the n-th derivative with respect to λ on both sides:
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Contrasting the left-hand side of 14 with the expression for the Hermite polynomials in 3, we conclude
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where we set λ = z/t. The right hand side of 14 is
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By iterating this procedure we get finally
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By looking at 15 we can rewrite the right hand side of the last equation as follows:
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We have therefore proved that
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