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1. Introduction and an Outline of the Main Results 

It is well-known that if Ao is the infinitesimal generator of  a Co-semigroup of  
bounded linear operators To(t) on a Banach space X, then given any bounded linear 
operator B on X, Ao + B generates a Co-semigroup T( t )  on X. A proof  of  this fact 
exploits the variation-of-constants formula 

t 

T ( t ) x  = To( t )x  + S To(t - T ) B T ( z ) x d z  , (1.1) 
0 

for every x e X and t > 0, to construct the "perturbed" semigroup T(t) .  
In many concrete applications, e.g. delay equations and first-order partial 

functional-differential equations, we don ' t  have quite this situation, yet the 
variation-of-constants formula plays a crucial role (although in a bit formal, as 
opposed to functional analytic, sense). In such cases B maps out of  the space X 
into some "bigger" space Y, but convolution brings us back to X (see, for instance, 
Hale [8]). 

The purpose o f  this paper is to introduce a systematic procedure to construct 
such a space Y and to give a precise, functional analytic, perturbation theory which 
serves as a unifying and simplifying framework for various special cases which arise 
in applications. 
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** Supported by ZWO (Netherlands Organization for the Advancement of Pure Research) and 
DFG (German Research Foundation) 



710 Ph. Cl6ment et al. 

Let ( , )  denote the pairing between X and its dual X*. Then (1.1) is equivalent 
t o :  

t 

(T(t)x,x*>=<To(t)x,x*)+ S <To(t-z)BT(z)x,x*)dz , (1.2) 
0 

for every x ~ X, x* e X* and t > 0. When writing (1.2) one considers an element of  X 
as a bounded linear functional on X*, i.e. we embed X in X** via the canonical 
isometry i :X~X** defined by 

i(x)(x*)=<x,x*>, for every x e X  and x*eX* .  

In (1.2) one does not have to consider all x* e X*. In fact (1.1) is still equivalent to 

t 

<T(t)x, z> = (To(t)x, z> +~ (To(t --z)BT(z)x, z)dz (1.3) 
0 

for every x e X, z e Z and t > 0, where Z is a weak * dense subspace of X*. As we shall 
demonstrate, a natural choice for Z is the maximal invariant subspace of X* on 
which T*(t) is strongly continuous. Here T*(t) is To(t)*. We shall denote this 
subspace by X*.  It is known [2, 10, 17] that X ~ is closed in the norm topology of X* 
and weak * dense in X*. 

Thus we consider an element o fXas  a bounded linear functional on X ~ Indeed, 
we can embed X into X ~ via the continuous injection j : X ~ X  ~ defined by 

j (x ) (x~  ~ forevery  x e X  and x ~  ~  

It has been proved by Hille and Phillips [10] that 

Ilxll':=sup{l<x,x%l:x| and Ilx| 

defines an equivalent norm on X (one even has Ilxll'--Ilxll whenever To(t) is a 
contraction semigroup). Thereforej(X), the range o f j  in X**, is a closed subspace 
of X ~ It is not difficult to verify that j = p  o i, where p : X * *  ~ X  ~ is defined by 

p(x**)(x~176 forevery  x ~  * and x**eX**. 

In other words,j  is the original embedding i o fXin to  X**, but when one "ignores" 
the values of  i(x) outside of  X ~ 

As an instructive example, let X be LI(S 1) and To(t) the group of translations. 
Then X* can be identified with L~(S 1) and X ~ with C(S1). So via the embedding 
j, LI(S 1) will be considered as a closed subspace of C(SI) * instead of L~(S1) *. 

If  we denote by To~ the restriction of T*(t) to X ~ and by To~ the adjoint of 
To~ then To~ is a semigroup on X ~ which is not necessarily strongly 
continuous. We shall denote by X ~ 1 7 6  the maximal invariant subspace of X ~ on 
which To~ is strongly continuous. In this paper we shall make the assumption 

j (X)=X ~176  (1.4) 

which is fulfilled in our example above (see [2, Sect. 1.4.2]). We call the case in which 
(1.4) holds the Q-reflexive case (pronunciation: the sun-reflexive case; Amann [! ] 
calls it the Ao-reflexive case, to emphasize that it is a property of the combination 
(X, Ao)). We shall recall below a useful compactness criterion for the resolvent of  A0 
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(due to Hille and Phillips [10]) which guarantees that (X, Ao) is (D-reflexive. 
Whenever we have (D-reflexivity we can (and will) identify Xand  X e o by means of j  
and then the situation can be conveniently summarized by the diagram 

X , X* 

Xe*  , X o 

where a horizontal arrow indicates transition to the dual space (taking adjoints) and 
a vertical arrow taking restrictions to the maximal subspace of strong continuity. 
On each of the spaces we have a semigroup and a generator indexed by the same 
symbols as the space and related to each other as indicated by the arrows. 

Rewriting (1.3), with Z=X ~ as 

t 

(T(t)x,x~ xe)+ S (BT(z)x, To~176 , (1.5) 
0 

for every x e ~ X  ~ and x e X " = " X  e~ and t>0 ,  we find that the equation still 
makes sense if B maps X continuously into X e*. The main point of  this paper is to 
prove that in this case (1.5) uniquely defines a Co semigroup T(t) on Xand  to give a 
characterization of its generator. So here the"bigger" space Y is chosen to be X ~ 

Note that if X is reflexive, i.e. i(X)=X**, then it is known [2, 10, 17] that 
X ~ = X* and consequently X e* = X** = X. So in thi~ case the results of  this paper 
reduce to the well-known results concerning bounded perturbations of the 
generator. Therefore we concentrate on the case in which X is not reflexive. 

We shall prove that X ~ is also the maximal invariant subspace on which T*(t) is 
strongly continuous and that X =  X e o is the maximal invariant subspace on which 
T~ is strongly continuous (and that T ~ 1 7 6  T(t)). Since both To~ and 
T~ are adjoints of  strongly continuous semigroups one can define their weak * 
generators Ao ~ and A o, .  We shall prove that D(A o , ) =  D(AoO,). This implies, in 
particular, that the domain of the weak * generator of the perturbed semigroup is 
independent of the perturbation B. However, the generator A of T(t) turns out to be 
the part of  A o ,  in Xand hence D(A) will, in general, depend on B. This may even go 
so far that all information about B is contained in D(A) (i.e. the action of Ao is the 
same as the action of A but their domains are different). So by considering a duality 
framework with four spaces we accomplish the realization of two desirable 
properties: domain independence on the big spaces and strong continuity on the 
small spaces. 

In this paper we restrict ourselves to linear problems. It should be clear, 
however, that the domain independence on the big space is the key point for a 
theory concerning semilinear problems. A paper on this subject, dealing with such 
items as linearized stability, the center manifold and Hopf  bifurcation, is in 
preparation. In fact the original motivation for this work comes from attempts to 
treat nonlinear structured population problems (see, for instance, Gyllenberg [7], 
Heijmans [9], Metz and Diekmann [12] and Thieme [16]) as semilinear evolution 
equations. 

In the applications our approach is in the spirit of older work of Kappel and 
Schappacher [11] on delay equations and more recent work of Desch and 
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Schappacher [4] on, among other things, age dependent population dynamics: take 
for To(t) the simplest prototype semigroup in the category one is interested in. For 
example, the semigroup corresponding to ~ = 0 considered as a delay equation and, 
more generally, the semigroup obtained by neglecting (i. e. putting equal to zero) all 
non-local terms (see Suhadolc and Vidav [15] for an example from transport theory; 
it seems likely that our framework covers such examples as well). Greiner [6] uses a 
different approach. He obtains a new generator by perturbing the domain of the old 
one. Actually, our results unify the case in which generators act differently on 
identical domains with cases in which they act identically on different domains. 

The theory of this paper will be illustrated by means of the equation modelling 
age-dependent population growth. In a separate paper Diekmann [5] will deal with 
delay equations. 

We conclude this Introduction with some remarks about notation. Elements 
of  X , X * , X  ~ etc. are denoted by x ,x* ,x  ~ etc. We use ( x , x * )  and ( x * , x )  
interchangeably to denote x*(x), i.e. the value of x* at x, whenever x~  X and 
x* ~X*. 

2. Dual Semigroups 

Let X be a (non-reflexive) Banach space and let T(t) be a strongly continuous 
semigroup of bounded linear operators on X with infinitesimal generator A. Let 
T*(t) denote the semigroup of adjoint operators acting on the dual space X* and 
let A * denote the adjoint of A. The following theorems summarize some well known 
results. Proofs may be found in Butzer and Berens [2], Yosida [17], Hille and 
Phillips [I0]. Also see Amann [1]. 

Theorem 2.1. (i) For any x * ~ X *  the map t~T*( t ) x*  from ~(+ into X* equipped 
with the weak * topology is continuous. 

(ii) A* is the weak * generator of  T*(t), i.e. x* belongs to D(A*) iff 
1 
t (T* ( t ) x * - x * )  converges in the weak * topology as t~O, and whenever there is 

convergence the limit equals A *x*. 
(iii) I f  x* belongs to D(A*) so does T*(t)x* for any t>O and A*T*(t)x* 

= T*(t)A*x*. 

Theorem 2.1 (iii) expresses that u*(t) = T*(t)x* is a solution of the differential 
equation 

d 
d--t u*(t) = A*u*(t) , u*(0) = x* , 

whenever x* e~D(A*), though differentiation has to be understood in the weak * 
sense. 

Unless X* is reflexive, the semigroup T*(t) need not be strongly continuous if we 
equip X* with its norm topology. Because of Theorem 2.1 (i) we call T*(t) a weak * 
continuous semigroup. The following definition makes sense. 

Definition 2.2. X ~ = {x* ~ X*:  lim II T*(t)x* - x* 11 = 0}. 
r io  
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Clearly the subspace X e is invariant  under T*(t)  and it is easily proved that  X e 
is norm-closed. Let T ~  denote the restriction of  T*(t) to X e. Then Te( t )  is 
strongly continuous.  Let A e denote its generator.  

Theorem 2.3 (Phillips). (i) X e = D ( A * ) .  
(ii) A e is the part o f  A * in X e,  i.e. the largest restriction o f  A * with both domain 

and range in X e. 
(iii) D(A e) is weak * dense in X*.  

Next  we present some less known results which constitute the essential part  o f  
Chapter  XIV of  Hille and Phillips [10], By definition 

IlxOH = s u p  {[<x, x e ) l  :x �9 X, Ilxll_-< 1}, 
for x e e  X e.  In order to enhance the symmetry  we introduce 

lixll'=sup {l<x,x~>l:x | ~ x  o, IlxOll 
for x e X .  

Lemma 2.4. (i) IIxll'<__ IIxll---<gllxll' where 

M=lim inf II ( I-h)-lll < 

In other words, IIIl' is a norm equivalent with the original norm and when T(t)  is a 
contraction semigroup the two norms are actually the same. 

(ii) I f  we equip X with the prime norm, the norm on X ~ remains unchanged, i.e. 

IIx~ II = s u p  {Kx, x~ :x �9 X, IIx II'--- 1} 
On X ~  we have, by duality, a weak * continuous semigroup Te*( t )  with weak * 
generator  A 0 , .  Every element of  X defines a continuous linear functional on X*, 
so a f o r t i o r i  on X ~ and therefore can be considered as an element of  X ~ I f  
<xl - x z ,  x e > = 0  for all x e e X  e then necessarily xl =x2 ,  since X ~ is weak * dense 
in X* and X* separates the points o f  X. So if we equip Xwi th  the prime norm there 
exists an isometric isomorphism of  X onto a closed subspace of  X e*, i.e. we can 
embed X into X e* by means of  the natural  mapping.  We shall, f rom now on, 
identify X with its embedding into X e*. 

Continuing our  game of  taking restrictions we introduce 

X ~  = {x e* � 9  lim II TO*(t) II--0) 
,~o 

There is no need for a new norm on X e ,  as Hille and Phillips prove:  

Lemma 2.5. The prime norm on X e is the same as the original norm. 

Since T(t)  is strongly cont inuous we clearly have that X c  X ~ e. 

Definition 2.6. X is called G-reflexive with respect to A iff X = X  e ~  

Theorem 2.7. X is Q-reflexive with respect to A i f f  ( , ~ I - A ) - *  is a(X, Xe ) -weak ly  
compact for  2 �9 0 (A). 

Theorem 2.8. X is (D-reflexive with respect to A i f f  X e is (9' reflexive with respect 
to A ~ 
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3. The Variation-of-Constants Formula 

In  this section, we shall prove that (1.5) can be rewritten as an equation in X 
(identified with j ( X )  = X ~  e): 

t 

T ( t ) x = T o ( t ) x + ~  T o ~  , t>O, x e X  . (3.1) 
0 

Therefore we have to give a precise meaning to the integral term. Since we are 
looking for a strongly continuous semigroup T(t) on X, the function z--* T ( z )x  will 
be a continuous function from [0, t] in X, which we denote by u. Bu then is a 
continuous function from [0, t] in X ~ So we are led to define an integral of  the 
form 

i T ~  dz , t>O (3.2) 
0 

w h e r e f i s  continuous from [0, t] in X ~ We shall even consider the case where 
f :  [0, t]--+X m* is only weak * continuous. 

First we describe how to integrate a weak * continuous function. Let Z be a 
Banach space and Z* its dual. Let z*(t) be a weak * continuous function from an 

b 

interval [a, b ] into Z*. Then the integral ~ (z ,  z*( t ) )dt  makes sense for any z e Z, and 
satisfies 

! ( z , z* ( t ) )d t  <(b-a) i l z i l  " ot~ Ilz*(t)[[ " 

Recall that, by the uniform boundedness theorem, any weak * continuous function 
is norm bounded. So we get that  

b 

z--,5 (z ,  z*( t ) )d t  
a 

defines a continuous linear functional on Z, hence an element of  Z*, which we 
b 

denote by I z*(t)dt. Note that by definition 
a 

z, z*(t)dt = ( z , z * ( t ) ) d t  , for all z e Z  . 
a 

If  L is a bounded linear operator on Z, then t ~ L * z * ( t )  is weak * continuous as well 
and it is easy to show that 

b b 

S L*z* ( t )d t=L*  ~ z*(t)dt . 
a a 

In general we may not replace L* by some bounded linear operator on Z* which is 
not a dual operator. 

Now, let us return to the integral in (3.2) w i t h f w e a k  * continuous. For  fixed 
t > 0 ,  the function z--* T~  - z ) f ( z )  is weak * continuous on [0, t], and the integral 
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can be defined as above. Assume that  M > I  and r are chosen such that  

liT(Oil <Me'~ , t>O . (3.3) 

Then we have the following est imate.  

II e O , ,  Lemma 3.1. Te*( t - r ) f ( r )& <M" 
O) 

- - '  sup 
O <~<_ t  

IIf(z)ll. 

e ~ - 1 
Here - -  

O) 
is to be interpreted as t if ~o = O. 

We can prove a lot more if  f is norm-cont inuous .  

t 

Theorem 3.2. Let f: [0, ~ ) ~ X  e* be norm-continuous, then t ~ j  Te*( t - z )  f (z)& 
is a norm-continuous Xee-valued function, o 

Proof F o r  t > 0  we define F(t ) -  Te*(t--z)f(z)d~. 
0 

(i) We first show that  F(t)EX ee, for t > 0 .  Let h > 0 .  Then 

re*(h)F(t)_F(t)=i  T@*(t+h-z) f (z )dz- i  Te*(t-'r)f('r)d'r 
0 0 

h t + h  

= - j  Te*(~)f( t-z)  d~ + S Te*(z)f( t+h-~)dz 
0 t 

t 

+ ~ T e,O:) {f(t + h - ~) - f ( t  - ~)} dz . 
h 

The norms of  the first two terms are less than 

gh sup II/(~)11, 
O<:__<~+h  

for K large enough.  The norm of  the last term is less than 

K sap Hf(~+h)-f(z)ll. 
O<~c_<t 

Therefore Te*(h)F(t)~F(t), as h~0, and by definition F(t)~X ee. 
(ii) Since 

h 

F(t + h) -F(t)  = Te*(h)F(t) -F(t)  + ~ Te*(z)f(t +h - z)dz 
0 

and 
h i 

F( t -h)  -F(t)  =~ Te*(t-z)f(~)dz +~ Te*(t -~) {f(z  - h )  - f ( z ) }  dz 
0 h 

it follows that  X ee -va luedness  implies norm-continuity.  [] 
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4. Perturbation Theory 

Consider a strongly continuous semigroup To(t) on X with generator `40. We will 
refer to these as the unperturbed semigroup and generator. F rom now on we make 
the basic. 

,4ssumption 4.1. X is O-reflexive with respect to ,40. 

The perturbation is defined, on the level of  the generator,  by a bounded linear 
opera tor  B from Xin to  X e*. The adjoint of  B maps X e** into X* but we will only 
consider its restriction to X e and write B * : X e - ~ X  *. The basic idea now is to 
construct a semigroup T(t) on X by solving the variat ion-of-constants  equat ion 

t 

T(t)x = To(t)x + ~ Toe*(t -z)BT(z)xd~ (4.1) 
0 

by successive approximations.  We call T(t) the perturbed semigroup. After the 
prepara tory  work of  Sect. 3 the p roof  that this method works is identical to the one 
for a truly bounded per turbat ion as given in, for instance, Pazy [13; Sect. 3.1] or 
Davies [3; Sect. 3.1 ]. 

Theorem 4.2. Equation (4.1) uniquely defines a strongly continuous semigroup T( t ) 
on X. The successive approximations converge in the uniform operator topology, 
uniformly for t in compact sets. 

The determination of  the generator  A is rather simple if we make a detour via 
X*, X e and X e*. But first we make  sure that  X @ is the space of strong continuity of  
T*(t) as well. Let us define 

U ( t ) =  i Toe*(t-~)BT(~)dz (4.2) 
0 

Lemma 3.1 implies that, as tJ, O, [[ U(t)[ I -~0 and therefore 11U*(t)[I ~ 0  as well. Hence 
we have 

Lemma 4.3. The function t~T*( t )x*  is norm-continuous on IR+ tf  and only if 
x* ~ X | 

So if x* ~ D(,4*) then necessarily x* e X e and in order to characterize D(A *) we 
may  restrict our attention to elements of  X e. 

Lemma 4.4. Let xe  ~ X  e, then -I U , ( t ) x e ~ B , x e  as t~0, relative to the weak * 
topology, t 

1 
i <T(r x,B*xe> as tJ, O. [] Proof. t o 

Recalling Theorem 2.1 (ii) we infer that 

Coronary 4.5. D(,4 *)= D( A *) and for x e ~ D( A *) we have ,4 *x e = A *x e + B*x e. 

From Theorem 2.3 (ii) it then follows that  
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Corollary 4.6. D(A e) = {x o e D(A*)  : A ~ x  e + B*x  ~ ~ X e) and A e x e  
= A * x  ~ + B*x  o. 

Since both T*(t) and T*(t)  leave i "0 invariant the same must be true for U*(t). 
Let U~ denote the restriction. Clearly 

-i U~ - T * ( r ) B * T o ~  (4.3) 
0 

where the integral is defined as before (i.e. as an X*-valued function which, 
actually, takes values in the subspace X~ Since U~ is the restriction of U*(t) 
necessarily I~'Ue(t) fl --+0 as tJ,0 and likewise tl U~ II ~0 .  Therefore the mapping 
t ~ T ~  ~* is norm-continuous iff t~To| ~ is norm-continuous. This 
yields: 

Theorem 4.7. X is G-reflexive with respect to A. 

Exactly as above we deduce 

l_emma 4.8. As t~O then 1_ U O , ( t ) x ~ B x  in the weak * topology. 
t 

Corollary 4.9. D(A o , )  = D(AoO,) and A o ,  = AoO, + B. 

Corollary 4.10. D(A ) = {x ~ D (Ao~ �9 Ao~ + Bx  ~ X},  and A x  = Ao ~  + Bx. 

Remarks. (i) We may as well start with To~ as the unperturbed semigroup and use 

t 

S ~  = To~ + ~ T*(t - ~ ) B *  SO(v)dz . (4.4) 
0 

Everything goes in exactly the same way and, in particular, we obtain the same 
generators. Hence S ~  Te ( t )  and as an alternative to (4.2) we find 

t 

U(t) = ~ T ~ - ~)BTo(z)d~ , (4.5) 
0 

with the role of perturbed and unperturbed semigroups interchanged. 
(ii) Actually, assumption 4.1 is not needed for the construction of the solu- 

tion S ~  of (4.4)! 
(iii) In the present presentation all proofs are based on an examination of the 

behaviour of the semigroups for t,~0. Alternative proofs would exploit the 
behaviour of the resolvents of the generators for 2 ~ ,  and the "'variation-of- 
constants formula" for the resolvents 

R(2,  A)  = R(2, Ao) + RO L, Ao~ ~, A)  . 

Note that for 2 E e(Ao), R(2, Ao~ is a bounded linear operator from X into X. 
(iv) The Favard class of a Co-semigroup on X is the set of x ~ X  which yield 

Lipschitz continuous orbits under the semigroup. Known results (see Theorem 2.1.4 
in [2]) imply that D(Ao ~ is the Favard class of both To(t) and T(t). This also shows 
the connection between the Favard class and the generalized domain of the 
generator. 
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5. Perturbations with Finite Dimensional Range 

In several applications of  wide interest the operator B has finite dimensional range, 
so it seems appropriate to elaborate on this special case. Our presentation has points 
in common with some of the work by Desch and Schappacher [4]. 

Let there be given r~* . . . . .  r ~ * e  X ~ and r* . . . . .  r* ~ X* such that 

Bx= ~ (r*,x)r~* . (5.1) 
i = l  

We define the entries qi~(t) of the matrix-valued function Q by 

q,j(t)=(r*, i To~ ) . (5.2) 

The estimate 

[q,j(tl)-q,j(t2)]< M (e~',2-e~.)llr. ll []rJ~*l} 
O) 

shows that Q is locally Lipschitz continuous and we conclude that Q has a 
representation of the form 

t 

a ( t ) = ~  K(z)dz , (5.3) 
o 

where the entries kij of K belong to L~ c . 

Lemma 5.1. For any integrable ~(-valued function ~? the identity 

r*, To~ =~ klj(t-r)~l(r)d~ 
0 0 

holds. 

Proof. Equality holds for t = 0. As r* does in general not commute with the integral, 
we integrate both sides of the above equation. Integrating the left-hand side we find 

) = r*, I T2*(a)dar~*rl(z)d~ 
0 0 

) = ~*, ~ ro~*(,~)d,~r~ * ,~(~)d~ 
0 0 

- i  , - qo(t-Z)rl(Qd~ 
0 

and deafly integration of the right-hand side yields the same result. [] 

Now let, as before, T(t)x be defined by the variation-of-constants equation 

t 

T(t)x = To(t)x +~ ro~ , ( 5 . 4 )  
0 
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and define the n-vector y(t) by 

yi(t) = (r*, T(t)x> . (5.5) 

Then (5.4) and Lemma 5.1 together imply that y satisfies the renewal equation 

y = h + K , y  , (5.6) 

where the n-vector valued forcing function h is given by 

hi(t) = <r*, To(t)x> , (5.7) 

and K ,  y denotes the convolution product of K and y. Conversely, given any solu- 
t iony of(5.6) with h of the specific form (5.7)we can recover T(t)x  by rewriting (5.4) 
in the form 

T( t )x= To(t)x + ~ i Toe*(t-z)r~*YJ( z)dv �9 (5.8) 
j = 1  0 

We conclude that the "projected" renewal equation (5.6) contains all the 
information ! 

Remarks. (i) We have chosen the indirect definition of the kernel K via (5.3) since a 
direct definition seems impossible in general. 

(ii) Since 

B*x ~ = s ( x  ~ rO*)r~ (5.9) 
i = 1  

and 
t 

T ~  Toe(t)+ I T ~ ( t - v ) S * T ~  , (5.10) 
0 

we find that the n-vector valued function z defined by 

zi (t) = ( T~  ~ ri e* ) (5.11) 

satisfies the "adjoint" renewal equation 

z = g + K r ,  z (5.12) 

where K r denotes the transpose of the matrix K (if the entries are complex we have 
to take complex conjugates as well) and the forcing function g is defined by 

gi(t) = (Toe(t) x~  r•*) . (5.13) 

6. Age-Dependent Population Dynamics 

In order to illustrate the theory developed so far we apply it to a well-known 
example from structured population dynamics. We do not present any new results, 
but intend to demonstrate the usefulness of the new functional analytic framework. 
In order to remain in the O-reflexive domain we consider a population which is 
distributed over afinite age interval. In a follow-up we will 3how how the results 
extend, mutatis mutandae, to distributions over IR+. Moreover, we plan to 
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elaborate the basic ideas much further, and to demonstrate how the resulting 
approach opens the way to a rather general theory for both linear and nonlinear 
systems describing structured populations. 

Before we start, let us recall some facts from measure theory. Let ~ denote the 
a-algebra of all Borel sets in [0, 1 ], and let M [0, 1 ] be the space of all complex regular 
Borel measures on [0, 1 ]. Then M [0, 1 ] can be identified with the dual space of C 
[0, 1] by using the pairing (4', #)  =S 4'd/~. With MAc [0, 1] we denote the subspace 
consisting of all absolutely continuous Borel measures on [0, 1]. For every/~ e Mac 
[0, 1] there exists a unique h~,~L~[O, 1] such that for every Borel set I2 in ~ ,  

# ( ~ )  = ~. h~a~ , 
f~ 

where 2 represents the Lebesgue measure, h, is called the Radon-Nikodym 
derivative of#  with respect to the Lebesgue-measure. It is clear that p~- ~h~ defines 
an isomorphism between MAc [0, 1 ] and L 1 [0, 1]. For more details we refer to Rudin 
[14]. 

Let fle L ~ [0, 1]. Consider the initial value problem 

am ~rn 
( t , a ) - ~ z -  - (t ,a)=fl(a)m(t,O) 0 < a <  1, t > 0  (6.1a) 

01 c a  

m(t, 1)=0 , t > 0  (6.1b) 

m(O,a)=4'(a) , 0-<a_<l . (6.1c) 

Here 4' is a continuous function on [0, 1] with 4' (1)= 0, and hence (6.1 b) is satisfied 
for t = 0. Let 

x=  Co[O, 1]={4'~ c[o, 1]: 4,(1)=o}. 

If we equip as usual X with the supremum norm then it becomes a Banach space. 
Readers who are familiar with age-dependent population models, might be 
surprized that we start with (6.1). However, the forthcoming analysis makes this 
understandable. We can rewrite (6.1), with (6.1 a) replaced by 

tgm am 
( t , a ) - - - - - ( t , a ) = O  0 < a < l ,  t > 0  

t~t ~3a ' ' 

as the abstract Cauchy problem 

dm 
dt ( t ) = A o m ( t ) ,  rn(0)=4' , 

where Ao is the closed operator 

Ao~=4", 

for every 4' in the domain given by 

(6.2) 

D(Ao) = {4' ~ C 1 [0, 11: 4'(1) = ~'(1) = O} . 
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It  is easily seen that  Ao generates a strongly continuous semigroup To(t) explicitly 
given by 

(T~ a+/>la+t<l ,. 

On the dual space 

X* = {#e  M[O, 11: #({1})=0} , 

the dual (weak * continuous) semigroup T*(t) is given by 

(T*(t)#)(12)=#(I2, )  , f 2 e ~  , 

where the Borel set g2t is (co + t : co ~ 12} c~ [0, 1 ]. Its weak * generator  A* has domain  

D ( A * ) =  {/zEMac[0,  1] :hu(a)=vu([O,a)),a~ [0, 1], for some v, EX*} , 

and is given by 

A* tz = - v~ 

for # ~ D (A~). We recall that  h u is the Radon-Nikodym derivative of  # with respect 
to the Lebesgue measure. Now obviously 

X e = O (A~) = Mac [0, 1 ] , 

and, as we noted above, we can identify Mac [0, 1 ] with L 1 [0, 1 ]. So we take the 
representat ion 

X e = L  1 [0, 1] . 

F rom the above expressions for A~ and D(A~) we derive that  

D(Ao~162 11 :~b(O)=O} , 

and for ~D(Ao~ 
AoO r -q,,.  

The Cauchy problem 

dn (t)=AoOn(t) , n(O)=~O , 
dt 

where ~h ~ X e, is an abstract  representation of  the initial value problem 

0n 0n 
at (t'a)+oa ( t , a ) = 0  , t > 0 ,  0 < a < l  (6.3a) 

n ( t , 0 ) = 0  , t > 0  (6.3b) 

n(O,a)=~(a) , 0 < a < l  . (6.3c) 

If  we interpret a as age, and n (t, a) as a density for individuals with age a at time t, 
then (6.3) is the system describing the evolution of  a populat ion with age-structure, 
where no births and no deaths occur. 
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Taking duals once more we get 

X e * = L  ~[0, 1] , 

(T~ a+t>la+t<l 

D(Aoe*) = {~b ~ Lip [0, 1] : ~b(1)=0} 

Ao**6 =~' 
Here Lip [0, 1] consists of all functions which are Lipschitz continuous on [0, 1]. 

One easily sees that X e  e = D (Ao e*) = X =  Co [0, 1 ], and therefore X is (3-re- 
flexive with respect to Ao. We note that G-reflexivity also follows from the 
compactness of the resolvent R(2, Ao). Let B : X ~ X  e ,  be the perturbation 

(Bda)(a)= fl(a)dp(O) . 

If A is the operator as determined by Corollary 4.10, i.e. 

D(A)=  {~beLip [0, 1] : 4~(1)=0 and ~b' + ~b(0)fle Co [0, 1]} 

.44, = 4 , '+  ~(o) /~ ,  

then the abstract representation of (6.1) is, 

dm 
d--t (t) = A m  (t) , m (0) = ~ , 

as it should be. It is easy to check that the abstract Cauchy problem 

__dn ( t ) = A e n ( t )  , n (0 )=~  , 
dt 

represents the partial differential equation, 

On On 
~ i  (t, a) + Ua (t, a) = o , t>0 ,  0 < a < l  , (6.4a) 

with boundary condition 
1 

n(t,O)=~ f l (a)n(t ,a)da , t>O , (6.4b) 
0 

and initial condition 
n(O,a)=~(a)  , 0 < a < l  . (6.4c) 

This latter system governs the evolution of a population with age-structure, whose 
per capita birth rate is fl(a). The boundary condition expresses the fact that all 
newborns have age zero. Our abstract theory (Sect. 4) tells us that both A and A e 
generate strongly continuous semigroups T(t)  and Te( t )  respectively. 

Because of the symmetry we might as well have chosen the system (6.4) as our 
starting point. In that case the perturbation C : X e ~ X  * looks as follows 

1 

(Cr  (a) = ~ fl(a) ~k(a)da" 6 , 
0 
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where 6 ~ M [0, 1 ] represents the (Dirac) measure concentrated at a = 0. Here Cis the 
restriction of B*: X ~ to X G. Because B and Chave a one-dimensional range 
we can go one step further, and apply the results of  Sect. 5. Let Q be the scalar valued 
function 

Q(t)=(f l ,  i T*(s)6ds ) �9 

Clearly 

From this we obtain immediately that 

t 

Q(t) = I fl(a)aa , 
0 

and therefore 
K(t)=fl(t) . 

1 

if a<t  , 
otherwise . 

For y (t) = (fl, n(t)) = ~ fl(a)n(t, a)da we find the renewal equation 
0 

t 

y (t) = h (t) + I K(s)y (t -s lds  , 
0 

1 

where h(t)=(fl, T0e(t)~p)=~ fl(a)O(a-t)da. Note that y(t) is the rate at which 
t 

individuals are born at time t. Once y is known, n ( t )= TO(t)~ can be computed in 
the following way: 

t 

T~ b = Toe(t)~ k + I r*(t  -s)y(s)t~ds , 
0 

from which we get 

n(t,a)=~q](a-t),  a>t  
( y ( t -a ) ,  a < t .  

Remark. Instead of X =  Co [0, 1 ] = {q~ ~ C[0, 1 ] : q~(1) = 0}, we might also represent X 
by Col0, 1), the space of all continuous functions on [0, 1), which tend to zero as 
a ~  1. Then we would get X * =  M [0, 1). Of course, the difference in representation 
does not affect the results. 

We emphasize that the computations above show that the functional analytic 
approach developed in this paper is in fact identical to the standard direct approach 
for the solution of age-dependent population problems via the renewal equation. 
The profit of the abstract reformulation is that items like linearized stability and 
Hopf  bifurcation can now be handled in the standard way without any recourse to 
ad hoc arguments. 

7. Some Remarks on Work in Progress 

The basic assumption that X is (D-reflexive with respect to Ao (assumption 4.1) is 
quite restrictive. The following important example illustrates this. 
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Let X =  Co(R+) ,  i.e. the Banach space consisting o f  all continuous functions 
~ b : ~ + ~  which vanish at infinity. Let T(t) be the (strongly continuous) 
~emigroup of  translations on X, 

(T(t) 4) (x) = (a (x + t) . 

It is known [2] that  X * = M ( I R + ) ,  the space o f  Borel measures on IR+, 
X e = L I ( I R + ) ,  X e * = L ~ ~  and Xee=BUC(R+)~:Co(IR+)=X.  Here 
BUC(IR+) is the space of  bounded uniformly continuous functions on IR+, 
equipped with the supremum norm. Hence the condition of  O-reflexivity is not 
satisfied. 

In a for thcoming paper we develop a perturbation theory for the general case. 
One o f  the main steps there concerns the definition o f  the canonical duality pairing 
between elements o f  X e e and elements of  X*. Now, if T0(t) is a Co-semigroup on X 
and B is a bounded linear perturbat ion from X to X e*, then we construct the 
perturbed semigroup T ~  on X ~  by solving the variation-of-constants 
formula 

t 

T e e ( t ) x  e e  = Toee(t)x e e  + J Toe*(t - s ) B T e e ( s ) x e e  ds , 
0 

where B also denotes the canonical extension to X e e Alternatively, one could start 
with the (restricted) dual semigroup Toe(t) on X ~ a bounded linear per turbat ion 
C : X e ~ X  * and the variation-of-constants formula 

1 

Te( t )x  e = Toe(t)x e + ~ T~(t - s )  CTe(s )xe  ds , 
0 

Lo construct a strongly continuous semigroup TO(t) on X e. It turns out that  both 
approaches are equivalent. 

An  important  problem in semigroup theory concerns the behaviour for t ~ ~ .  In 
this respect, properties of  the semigroup like the location o f  its spectrum, 
sompactness and irreducibility (in the sense o f  positive operators) play a very 
important role, as indicated in [9]. In a forthcoming paper we shall deal extensively 
with such properties. 
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