Department of Mathematics and Statistics Semigroups and Delay Equations Exercises 6 14.3.2014

1. Let A be a closed densely defined operator in the Banach space X and let Y be a Banach space that is continuously embedded in X. The part $A_{|}$ of A in Y is, by definition, the operator

$$A_{|}\varphi = A\varphi$$

$$\mathcal{D}(A_{|}) = \{\varphi \in \mathcal{D}(A) \cap Y : A\varphi \in Y\}.$$

Show that if $\lambda \in \varrho(A)$ is such that $R(\lambda, A)Y \subset Y$, then $\lambda \in \varrho(A_{|})$ and $R(\lambda, A_{|}) = R(\lambda, A)_{|}$.

- 2. Prove that A^{\odot} is the part of A^* in X^{\odot} and use this and the previous excercise to show that $\sigma(A^{\odot}) = \sigma(A^*)$.
- 3. Let A be the generator of the semigroup T defined by

$$T(t)\varphi = T_0(t)\varphi + j^{-1}\left(\int_0^t T_0^{\odot *}t - s)BT(s)\varphi ds\right).$$

and let B be given by

$$B\varphi = \sum_{i=1}^{N} \langle \varphi, r_i^* \rangle r_i^{\odot *}, \quad \varphi \in X.$$

Define

$$\begin{aligned} r_i(\lambda) &= j^{-1} R(\lambda, A_0^{\odot *}) r_i^{\odot *}, \quad \lambda \in \varrho(A_0), \\ r_i^{\odot}(\lambda) &= R(\lambda, A_0^{\circ}) r_i^*, \quad \lambda \in \varrho(A_0) \end{aligned}$$

and let $M(\lambda)$ be the matrix with entries

$$M_{ij}(\lambda) = \langle r_j(\lambda), r_i^* \rangle, \quad \lambda \in \varrho(A_0).$$

Prove that if $\lambda \in \varrho(A_0)$ and $\psi^{\odot} \in X^{\odot}$, then

$$A^*\psi^\odot = \lambda\psi^\odot$$

if and only if

$$\psi^{\odot} = \sum_{i=1}^{N} d_i r_i^{\odot}(\lambda),$$

where the coefficients d_i are the components of a row vector d satisfying

$$dM(\lambda) = d.$$

4. Prove that there exists a matrix-valued function $k \in L^{\infty}_{loc}(\mathbb{R}_+, \mathbb{R}^{N \times N})$ such that

$$\left\langle j^{-1}\left(\int_0^t T_0^{\odot*}(t-\tau)r_j^{\odot*}\eta(\tau)d\tau\right), r_i^*\right\rangle = \int_0^t k_{ij}(t-\tau)\eta(\tau)d\tau$$

for all $\eta \in L^1_{\rm loc}(\mathbb{R}_+)$ and deduce that the Laplace transform \widehat{k} of k is

$$k(\lambda) = M(\lambda), \quad \lambda \in \varrho(A_0).$$

5. During the lectures it was shown that the integrated semigroups defined on $X^{\odot *}$ by

$$W_{0}(t)\varphi^{\odot*} = \int_{0}^{t} T_{0}^{\odot*}(s)\varphi^{\odot*}ds$$
$$W(t)\varphi^{\odot*} = \int_{0}^{t} T^{\odot*}(s)\varphi^{\odot*}ds$$

satisfy

$$W(t)\varphi^{\odot*} = W_0(t)\varphi^{\odot*} + \int_0^t T_0^{\odot*}(s)BW(t)\varphi^{\odot*}ds.$$

Use this to show that the solution u of

$$u(t) = T_0(t)\varphi + \int_0^t T_0^{\odot *}(t-s)(Bu(s) + f(s))ds$$

is given by

$$u(t) = T(t)\varphi + \int_0^t T^{\odot*}(t-s)f(s)ds.$$