Department of Mathematics and Statistics Semigroups and Delay Equations Exercises 5 21.2.2014

1. Prove that every subadditive function $p:(0,\infty)\to\mathbb{R}$ satisfies

$$\lim_{t \to \infty} \frac{p(t)}{t} = \inf_{t > 0} \frac{p(t)}{t}.$$

2. Let T be a C_0 -semigroup on the Banach space X. Show that for every $x \in X$ one has

$$\omega(x;T) := \inf\left\{\omega \in \mathbb{R} : \exists M \ge 1, \|T(t)x\| \le Me^{\omega t} \ t \ge 0\right\} = \limsup_{t \to \infty} \frac{1}{t} \log\|T(t)x\|$$

3. Let A be the infinitesimal generator of a C_0 -semigroup T. Show that the spectral bound s(A) is the abscissa of holomorphy of the Laplace transform

$$\lambda \mapsto \int_0^\infty e^{-\lambda t} T(t) dt$$

and that

$$\omega_1(A) := \sup \left\{ \omega(x;T) : x \in \mathcal{D}(A) \right\}$$

is the abscissa of convergence.

- 4. Let $F : \mathbb{R}_+ \to \mathbb{R}_+$ be continuos and assume that $\int_0^\infty F(t)dt < \infty$. Show that if there exist $m \in \mathbb{N}$ and $n \in \mathbb{N}$ such that $F(t+s) \leq mF(s)$ for all $s \geq 0$ and $t \in [0, n]$, then $\lim_{s \to \infty} F(s) = 0$.
- 5. Let X be the Hilbert space of all square-summable sequences $x = \{x_1, x_2, \ldots\}$ with $x_n \in \mathbb{C}^n$ and let A_n be the $n \times n$ -matrix

$$\left(\begin{array}{ccccccccc} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{array}\right)$$

Define $T(t): X \to X$ by

$$(T(t)x)_n = e^{2\pi i n t} e^{tA_n} x_n$$

Show that T is a a C_0 -semigroup and determine its generator. Determine $s(A), \omega_1(A)$ and $\omega_0(T)$.