Department of Mathematics and Statistics Semigroups and Delay Equations Exercises 4 14.2.2014

1. Let T be a C_0 -semigroup on a Banach space X. Show that

$$T^*(t)x^* = (\lambda I - A^*) T^{\odot}(t)R(\lambda, A^*) x^*$$

for all $x^* \in X^*$ and all $t \ge 0$.

2. Let X be a Banach space and let $f : [a, b] \to X^*$ be continuous from [a, b] to X^* equipped with the weak*-topology. Show that if T is a bounded linear operator on X, then

$$T^* \int_a^b f(s) ds = \int_a^b T^* f(s) ds.$$

If S is a bounded linear operator on X^* , is it necessarily true that

$$S\int_{a}^{b} f(s)ds = \int_{a}^{b} Sf(s)ds ?$$

3. Let A be a linear operator in the Banach space X. Show that

$$AR(\lambda, A)x = R(\lambda, A)Ax$$

for all $x \in \mathcal{D}(A)$ and all $\lambda \in \varrho(A)$.

- 4. Show that the spectrum of a bounded linear operator on a Banach space is a nonempty compact subset of the complex plane.
- 5. Let T be a bounded linear operator from the Banach space X to the Banach space Y. Prove that the following assertions are equivalent:
 - (i) T is a compact operator,
 - (ii) If $U \subset X$ is the open unit ball, then T(U) is totally bounded in Y.
 - (iii) Each bounded sequence x_n in X has a subsequence x_{n_i} such that Tx_{n_i} converges in Y.