Department of Mathematics and Statistics Semigroups and Delay Equations Exercises 3 7.2.2014

1. Let A be the infinitesimal generator of a strongly continuous semigroup T with growth bound ω_0 , that is, $\omega_0 := \inf \{ \omega \in \mathbb{R} : \exists M \ge 1, \|T(t)\| \le M e^{\omega t} \text{ for all } t \ge 0 \}$. Show that $\varrho(A^*)$ contains the right half-plane $\{ \lambda \in \mathbb{C} : \operatorname{Re} \lambda > \omega_0 \}$ and that

$$R(\lambda, A^*) = R(\lambda, A)^*$$

for all $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > \omega_0$.

2. Let X be a Banach space and let $f : [a, b] \to X^*$ be continuous from [a, b] to X^* equipped with the weak*-topology. Show that the mapping

$$x\mapsto \int_a^b \langle x,f(s)\rangle ds$$

defines a continuous linear functional on X, that is, an element of X^* . This element is denoted $\int_a^b f(s)ds$ and is called the weak^{*} Riemann integral of f. (Hint: Banach-Steinhaus).

- 3. Let A be the infinitesimal generator of a strongly continuous semigroup T on the Banach space X. Prove that X is \odot - reflexive with respect to T if and only if $R(\lambda, A)$ is a compact operator in the weak topology on X determined by X^{\odot} , that is, the weakest topology on X making the functionals $x \mapsto \langle x, x^{\odot} \rangle$ continuous for all $x^{\odot} \in X^{\odot}$.
- Let A be the infinitesimal generator of a strongly continuous semigroup T on the Banach space X. Prove that X is ⊙- reflexive with respect to T if and only if X[⊙] is ⊙- reflexive with respect to T[⊙].