Department of Mathematics and Statistics Semigroups and Delay Equations Exercises 1 24.1.2014

1. In the literature there occur different definitions of resolvent set and resolvent operator. During the lectures the following definition was presented:

Definition 1 Let $A : \mathcal{D}(A) \to X$ be a linear operator in the Banach space X. The resolvent set $\varrho(A)$ of A consists of all $\lambda \in \mathbb{C}$ for which

- (i) $\lambda I A$ is an injection,
- (ii) $\overline{\mathcal{R}(\lambda I A)} = X$,

(iii) $(\lambda I - A)^{-1} : \mathcal{R}(\lambda I - A) \to X$ is a bounded linear operator.

For all $\lambda \in \rho(A)$ the resolvent operator $R(\lambda, A)$ of A is the unique extension of $(\lambda I - A)^{-1}$ to a bounded linear operator on X.

Here is another popular definition of resolvent:

Definition 2 Let $A : \mathcal{D}(A) \to X$ be a linear operator in the Banach space X. The *resolvent set* $\varrho(A)$ of A consists of all $\lambda \in \mathbb{C}$ for which

- (i) $\lambda I A$ is a bijection $\mathcal{D}(A) \to X$,
- (ii) $(\lambda I A)^{-1}$ is a bounded linear operator on X.

For all $\lambda \in \varrho(A)$ the resolvent operator of A is $R(\lambda, A) = (\lambda I - A)^{-1}$.

Prove that

- (a) If A is a closed operator, then the two definitions are equivalent but that in general they are not.
- (b) If $\rho(A) \neq \emptyset$ according to Definition 2, then A is closed. The converse is false: A closed operator may have empty resolvent set.
- 2. Let r > 0 and let $X = C_0[-r, 0)$ be the Banach space of all continuous functions on [-r, 0] that vanish at 0. Define for all $f \in X$

$$(T(t)f)(\theta) = \begin{cases} f(\theta+t) & \text{if } 0 \le t \le -\theta, \\ 0 & \text{if } -\theta < t, \end{cases} \quad \theta \in [-r,0].$$

Show that T is a C_0 -semigroup on X, determine its infinitesimal generator A and find $\rho(A)$ and $R(\lambda, A)$. Do the same in the case $X = L^p[-r, 0]$ $(1 \le p < \infty)$.

3. Let X be either $L^p(\mathbb{R})$ $(1 \le p < \infty)$ or $BUC(\mathbb{R})$ and define for all $f \in X$

$$(T(t)f)(x) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{-y^2/2t} f(x-y) dy \quad y \in \mathbb{R}, \quad t > 0$$

and put T(0) = I.

Prove that T is a C_0 -semigroup on X, determine its infinitesimal generator A and find $\rho(A)$ and $R(\lambda, A)$.

4. Let A be the infinitesimal generator of a C_0 -semigroup T satisfying $||T(t)|| \leq M$ for $t \geq 0$. Show that if $x \in \mathcal{D}(A^2)$, then

$$||Ax||^2 \le 4M^2 ||A^2x|| ||x||.$$

5. Apply Exercise 4 to the semigroup of left translations on $BUC(\mathbb{R})$ to prove Landau's inequality

$$\left(\sup_{x\in\mathbb{R}}|f'(x)|\right)^2 \le 4\sup_{x\in\mathbb{R}}|f''(x)| \sup_{x\in\mathbb{R}}|f(x)|.$$