Department of Mathematics and Statistics Real Analysis I Exercise 6 2.5.2014

- 1. (a) Let $G \subset \mathbb{R}^n$ be an open set. Prove that every $x \in G$ is a density point of G.
 - (b) Show by an example that a point $x \in \mathbb{R}^n \setminus G$ can be a density point of an open set $G \subset \mathbb{R}^n$.
 - (c) Construct a set $A \subset \mathbb{R}$ that is not open although every point $x \in A$ is a density point of A.
- 2. Let $\mathbb{Q} = \{q_k : k \in \mathbb{N}\}$ be the set of all rational numbers. Define

$$f(x) = \sum_{\substack{k \in \mathbb{N} \\ q_k \le x}} 2^{-k}, \quad x \in \mathbb{R}.$$

Prove:

(a) $f: \mathbb{R} \to (0, 1)$ is strictly increasing.

(b) f is continuous at $x \iff x \in \mathbb{R} \setminus \mathbb{Q}$.

3. Let $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ be functions of bounded variation. Prove that

$$V_{fg}(a,b) \le M_f V_g(a,b) + M_g V_f(a,b),$$

where $M_f = \sup\{|f(x)|: x \in [a, b]\}$ and $M_g = \sup\{|g(x)|: x \in [a, b]\}.$

- 4. (a) Verify that every function of bounded variation is bounded.
 - (b) Let $f: [a, b] \to \mathbb{R}$ be absolutely continuous. Prove that f is continuous and of bounded variation.
- 5. Let $f: [a, b] \to \mathbb{R}$ be absolutely continuous and let $E \subset [a, b]$ be a set of measure zero (m(E) = 0). Prove that also the image fE is of measure zero.
- 6. Is the function $f: [0,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} x^3 \cos \frac{\pi}{x}, & 0 < x \le 1, \\ 0, & x = 0, \end{cases}$$

absolutely continuous?