Department of Mathematics and Statistics Real Analysis I Exercise 4 10-11.4.2014

- 1. Let $1 \leq p < \infty$ and $f, f_k \in L^p(X)$, $k \in \mathbb{N}$. Suppose that $f_k \to f$ a.e. and $\|f_k\|_p \to \|f\|_p$. Prove that $\|f_k - f\|_p \to 0$, in other words, $f_k \to f$ in $L^p(X)$.
- 2. Give an example of functions $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R})$ such that the function

$$y \mapsto f(x-y)g(y)$$

is not integrable for all $x \in \mathbb{R}$.

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous and $g_{\varepsilon} = m(B(0, \varepsilon))^{-1} \chi_{B(0, \varepsilon)}$. Prove that $g_{\varepsilon} * f(x) \to f(x)$ as $\varepsilon \to 0+$.
- 4. Suppose that $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$, and $g \in L^1(\mathbb{R}^n)$. Prove that f * g(x) exists for a.e. $x \in \mathbb{R}^n$, $f * g \in L^p(\mathbb{R}^n)$, and

$$||f * g||_p \le ||f||_p ||g||_1.$$

- 5. Let $g \geq 0$ be a measurable function in \mathbb{R}^n . Suppose that there exists a constant C such that $||f * g||_p \leq C||f||_p$ for every non-negative $f \in L^p(\mathbb{R}^n)$. Prove that $C \geq ||g||_1$.
- 6. Prove the following covering theorem: Let $\{B(x_i, r_i)\}, i \in I$, be a finite collection of balls in a metric space (X, d). Then there exists $J \subset I$ such that the balls $B(x_i, r_i), i \in J$, are mutually disjoint and

$$\bigcup_{i \in I} B(x_i, r_i) \subset \bigcup_{i \in J} B(x_i, 3r_i).$$