Department of Mathematics and Statistics Real Analysis I Exercise 3 3-4.4.2014

1. Let $\mu(X) < \infty$. Prove that

$$\|f\|_{\infty} = \lim_{p \to \infty} \|f\|_p$$

for all $f \in L^{\infty}(\mu)$. Does this hold without the assumption $\mu(X) < \infty$? Why?

2. Suppose that $f \in L^r$ for some $r \in]1, \infty[$. Prove that

$$\|f\|_{\infty} = \lim_{p \to \infty} \|f\|_p$$

3. Let $f \in L^p(X)$, with p > 1. Prove that there exists $g \in L^q(X)$, $q = \frac{p}{p-1}$, such that $\|g\|_q = 1$ and

$$\int_X fg \, d\mu = \|f\|_p.$$

Conclusion?

4. Let (X, Γ, μ) be a complete measure space such that $\mu(A) \ge 1$ whenever $A \in \Gamma$ and $\mu(A) > 0$. Suppose that $1 \le p < q \le \infty$. Prove that $L^p \subset L^q$ and

$$||f||_{\infty} \le ||f||_q \le ||f||_p \le ||f||_1.$$

- 5. Let (X, Γ, μ) be a complete measure space and $1 \le p, q < \infty$.
 - (a) Suppose that $f_i \in L^p$, $i \in \mathbb{N}$, $||f_i f||_p \to 0$, and $f_i \to g$ a.e. Prove that f = g a.e.
 - (b) Suppose that $f_i \in L^p \cap L^q$, $i \in \mathbb{N}$, $||f_i f||_p \to 0$, and $||f_i g||_q \to 0$ a.e. Prove that f = g a.e.
- 6. Prove that one can not, in general, choose the set F in Egorov's theorem so that $\mu(X \setminus F) = 0$.