Department of Mathematics and Statistics
Real Analysis I
Exercise 2
27-28.3.2014

1. Let (X, Γ, μ) be a complete measure space and let $f \in L^{\infty}(X)$. Prove that

$$
\|f\|_{\infty}=\inf \{\sup \{|f(x)|: x \in X \backslash N\}: N \in \Gamma, \mu(N)=0\} .
$$

2. Let $\mu(X)<\infty$ and $1 \leq q<p<\infty$.
(a) Prove, without using Hölder's inequality, that $L^{p}(\mu) \subset L^{q}(\mu)$.
(b) Prove (by using Hölder's inequality) that

$$
\|f\|_{q} \leq\|f\|_{p}(\mu(X))^{(p-q) / p q}
$$

$$
\text { for } f \in L^{p}(\mu)
$$

3. Let $\left(f_{j}\right)$ be a sequence of nonnegative Lebesgue-measurable functions $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\int_{\mathbb{R}} f_{j} d m \rightarrow 0
$$

Is it true that necessarily $f_{j}(x) \rightarrow 0$ for a.e. $x \in \mathbb{R}$? [Why??]
4. Let $f: B^{n}(0,1) \rightarrow \dot{\mathbb{R}}, f(x)=\log |x|$. Determine all the values of p for which $f \in L^{p}\left(B^{n}(0,1)\right)$?
5. Suppose that $f \in L^{p}$ and $g \in L^{q}$, where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ for some $r \geq 1$. Prove that $f g \in L^{r}$ ja $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$.
6. Suppose that $f, f_{k} \in L^{1}(\mu), f_{k} \geq 0, k \in \mathbb{N}$, and $\liminf _{k \rightarrow \infty} f_{k}(x) \geq$ $f(x)$ for μ-a.e. $x \in X$. Suppose furthermore that

$$
\int_{X} f_{k} d \mu=\int_{X} f d \mu=1
$$

for all $k \in \mathbb{N}$. Prove that

$$
\int_{X}\left|f_{k}-f\right| d \mu \rightarrow 0
$$

