Department of Mathematics and Statistics Real Analysis I Exercise 2 27-28.3.2014

1. Let (X, Γ, μ) be a complete measure space and let $f \in L^{\infty}(X)$. Prove that

$$\|f\|_{\infty} = \inf \{ \sup\{|f(x)| \colon x \in X \setminus N\} \colon N \in \Gamma, \mu(N) = 0 \}.$$

- 2. Let $\mu(X) < \infty$ and $1 \le q .$
 - (a) Prove, without using Hölder's inequality, that $L^p(\mu) \subset L^q(\mu)$.
 - (b) Prove (by using Hölder's inequality) that

$$||f||_q \le ||f||_p \left(\mu(X)\right)^{(p-q)/pq}$$

for $f \in L^p(\mu)$.

3. Let (f_j) be a sequence of nonnegative Lebesgue-measurable functions $f_j \colon \mathbb{R} \to \mathbb{R}$ such that

$$\int_{\mathbb{R}} f_j \, dm \to 0.$$

Is it true that necessarily $f_j(x) \to 0$ for a.e. $x \in \mathbb{R}$? [Why??]

- 4. Let $f: B^n(0,1) \to \dot{\mathbb{R}}, f(x) = \log|x|$. Determine all the values of p for which $f \in L^p(B^n(0,1))$?
- 5. Suppose that $f \in L^p$ and $g \in L^q$, where $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ for some $r \ge 1$. Prove that $fg \in L^r$ ja $||fg||_r \le ||f||_p ||g||_q$.
- 6. Suppose that $f, f_k \in L^1(\mu), f_k \ge 0, k \in \mathbb{N}$, and $\liminf_{k\to\infty} f_k(x) \ge f(x)$ for μ -a.e. $x \in X$. Suppose furthermore that

$$\int_X f_k d\mu = \int_X f d\mu = 1$$

for all $k \in \mathbb{N}$. Prove that

$$\int_X |f_k - f| d\mu \to 0$$