
2D and 3D FINITE ELEMENT METHOD
Boundary Value Problem

◮ Consider the following BVP in 2D (or 3D):

−∇ ·
(

α∇u(r)
)

+ βu(r) = f (r), r ∈ Ω, (82)

u|ΓD = gD, Dirichlet (83)

α
∂u
∂n

∣

∣

∣

∣

ΓN

= gN , Neumann (84)

◮ Here u is a unknown function, α and β are given coefficients, f , gD

and gN are known functions, and Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, is the
boundary of Ω.
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2D and 3D FINITE ELEMENT METHOD
Weak Formulation

◮ With Dirichlet boundary condition the weak formulation reads: Find
u ∈ H1(Ω), γDu = gD, so that

〈∇w , α∇u〉+ 〈w , βu〉 = 〈w , f 〉 , (85)

holds for all w ∈ H1(Ω), γDw = 0.
◮ With Neumann boundary condition the weak formulation reads:

Find u ∈ H1(Ω) so that

〈∇w , α∇u〉+ 〈w , βu〉 = − < w , gN >ΓN + 〈w , f 〉 , (86)

holds for all w ∈ H1(Ω).
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GENERAL RECIPE
Weak Formulation

◮ Weak formulation can be obtained as follows. Multiply equation

−∇ ·
(

α∇u(r)
)

+ βu(r) = f (r), (87)

with a testing function w ∈ H1(Ω) via the L2 symmetric product

−〈w , ∇ · (αε(r)∇u〉+ 〈w , β∇u〉 = 〈w , f 〉 . (88)

◮ Use identity
∇ · (uF) = ∇u · F + u∇ · F, (89)

with F = α∇u

−〈w , ∇ · (α∇u)〉 = 〈∇w , α∇u〉+
∫

Ω

∇ · (wα∇u) dΩ. (90)

◮ Then Gauss divergence theorem and boundary conditions give
∫

Ω

∇ · (wα∇u) dΩ = 〈w , α n · ∇u〉ΓN
=

〈

w , gN
〉

ΓN
. (91)

◮ Wanted weak formulation is obtained by combining above results.
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2D and 3D FINITE ELEMENT METHOD
Mesh and Finite Element Space

◮ A significant obvious difference compared to 1D is the mesh, i.e.,
geometrical element. In 2D we use triangles and in 3D tetras.

Figure: Triangle (2D) and tetra (3D) meshes.

◮ FE space (T,PT ,ΣT) consists of:
◮ Geometrical element T , a triangle (2D) or a tetra (3D).
◮ First order polynomial approximation on T .
◮ dof are the values of the approximation of u at the nodes of T .
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2D and 3D FINITE ELEMENT METHOD
Basis Functions

◮ Use piece-wise linear continuous basis functions un

u(r) ≈ uh(r) =
NN
∑

n=1

cnun(r), (92)

defined as (Nn and Nm denote nodes of the mesh)

un(r) =







1 if r = Nn,
0 if r = Nm, m 6= n,

linear otherwise.
(93)
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Figure: Support (left) and magnitude (right) of a linear nodal basis function.
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2D and 3D FINITE ELEMENT METHOD
Basis Functions

◮ This approximation is unisolvent and H1 conforming.
◮ It defines a linear interpolation on each element.
◮ The total number of dof is the number of nodes of the mesh. (Note:

Dirichlet boundary data fixes the values on the boundary).
◮ The number of elements (triangles) associated to a node depends

on the mesh.
◮ Extension to 3D is straightforward.
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2D and 3D FINITE ELEMENT METHOD
Matrix Equation and Local Matrices

◮ Using Galerkin’s method we obtain a matrix equation

A x = b, (94)

with elements (without boundary conditions)

Amn = 〈∇um , α∇un〉+ 〈um , βun〉 , (95)

bm = 〈um , f 〉 . (96)

◮ Similarly as in 1D, define local matrices and local vector

alok1(i, j) =

∫

Tk

Nk
i (r)Nk

j (r) dr, (97)

alok2(i, j) =

∫

Tk

∇Nk
i · ∇Nk

j dr, (98)

blok1(i) =

∫

Tk

Nk
i (r) f (r) dr, (99)

i, j = 1, . . . , 3 (2D), i, j = 1, . . . , 4 (3D). Here Nk
i = un|Tk .
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2D and 3D FINITE ELEMENT METHOD
System Matrix Assembly

for k = 1, . . . , number of elements do
% Compute local matrices alok1 and alok2
for i = 1, . . . ,R + 1 do

for j = 1, . . . ,R + 1 do
alok1(i, j)←

∫

Tk
Nk

i (r)Nk
j (r) dr

alok2(i, j)←
∫

Tk
∇Nk

i (r) · ∇Nk
j (r) dr

end for
end for
% Add local matrices to the global one
for i = 1, . . . ,R + 1 do

for j = 1, . . . ,R + 1 do
A(nk

i , nk
j )← A(nk

i , nk
j ) + αkalok2(i, j) + βkalok1(i, j)

end for
end for

end for
◮ Here R = 2 (2D) or 3 (3D), αk and βk are constants in Tk.
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2D and 3D FINITE ELEMENT METHOD
Source Vector Assembly

for k = 1, . . . , number of elements do
Compute local vector blok1
for i = 1, . . . ,R + 1 do
blok1(i)←

∫

Tk
Nk

i (r) f (r) dr
end for
Add local vector to the global one
for i = 1, . . . ,R + 1 do

b(nk
i )← b(nk

i ) + blok1(i)
end for

end for
◮ Analogously to 1D, indeces nk

i and nk
j are given in 2D and 3D by

nk
i = etopol(i, k) and nk

j = etopol(j, k). (100)

◮ The algorithms, and also how the boundary conditions are enforced
are identical with the 1D case. What changes is the numerical
evaluation of the matrix elements.
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2D and 3D FINITE ELEMENT METHOD
2D Data Structures

◮ A 2D mesh can be described with nodes, edges and elements.
Vertices of the elements (triangles) are called nodes.

◮ A triangular mesh can be defined using the following data structures

coord : (2× NN) matrix; x and y coordinates of the nodes,

etopol : (3× NT ) matrix; indeces of the nodes of the elements.

◮ Here NN is the number of the nodes and NT is the number of the
elements.

◮ The x and y coordinates of the vertices of an element k are (Matlab
notations):

p1 = coord(:,etopol(1,k));

p2 = coord(:,etopol(2,k));

p3 = coord(:,etopol(3,k));
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2D and 3D FINITE ELEMENT METHOD
3D Data Structures

◮ A tetra mesh in 3D can be defined using the following data
structures

coord : (3× NN) matrix; x, y and z coordinates of the nodes,

etopol : (4× NT ) matrix; indeces of the nodes of the elements.

◮ Here NN is the number of the nodes and NT is the number of the
elements.

◮ The x, y and z coordinates of the vertices of an element k are
(Matlab notations):

p1 = coord(:,etopol(1,k));

p2 = coord(:,etopol(2,k));

p3 = coord(:,etopol(3,k));

p4 = coord(:,etopol(4,k));
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ Let pk
j , j = 1, 2, 3, denote the vertices of a triangle Tk.

◮ The vertices of a reference triangle T̂ are (0, 0), (1, 0) and (0, 1).
◮ Define a linear mapping Fk : T̂ 7→ Tk.
◮ Function Fk maps point (0, 0) to pk

1, point (1, 0) to pk
2 and point (0, 1)

to pk
3.
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3

p1

p2

p3
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ξ

η
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y

Figure: Linear mapping Fk from a reference triangle T̂ to a triangle Tk.
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ Mapping Fk can be defined as

Fk(ξ, η) :=

3
∑

i=1

pk
i N̂i(ξ, η) = (pk

2 − pk
1)ξ + (pk

3 − pk
1)η + pk

1, (101)

where N̂i, i = 1, 2, 3, are the nodal shape functions on T̂

N̂1(ξ, η) = 1− ξ − η, (102)

N̂2(ξ, η) = ξ, (103)

N̂3(ξ, η) = η. (104)
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Figure: Linear nodal shape functions on a reference triangle.
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ Using mapping Fk we can write
∫

Tk

u(x, y) dx dy =

∫

T̂

u(Fk(ξ, η)) | det(JFk)| dξ dη (105)

where JFk is the Jacobian of Fk, given as

JFk =

[

∂Fk

∂ξ
,
∂Fk

∂η

]

=
[

pk
2 − pk

1, pk
3 − pk

1

]

. (106)

◮ With this formula the integration on Tk is reduced to integration on T̂
and can be evaluated numerically using 2D integration points and
weights, ξp, ηp and ωp, defined on the reference element T̂

∫

Tk

u(x, y) dx dy ≈ | det(JFk)|
P

∑

p=1

ωpu(Fk(ξp, ηp)). (107)

◮ Note | det(JFk)| is two times area of the triangle Tk.
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ Shape functions on T can be defined using mapping Fk as

Nk
i := N̂i(F

−1(r)), (108)

i.e.,
Nk

i (r) = N̂i(F
−1
k (r)) = N̂i (̂r), (109)

where F−1
k : Tk 7→ T̂ is the inverse of Fk, r = (x, y) is a point in Tk

and r̂ = (ξ, η) a point in T̂k.
◮ Thus, we have

alok1(i, j) =

∫

Tk

Nk
i (r)Nk

j (r) dr = | det(JFk)|

∫

T̂
N̂i (̂r) N̂j (̂r) dr̂, (110)

blok1(i) =

∫

Tk

Nk
i (r) f (r) dr = | det(JFk)|

∫

T̂
N̂i (̂r) f (Fk (̂r)) dr̂. (111)
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ The gradients of the nodal shape functions are more complicated.
◮ Using the chain rule we get (in 2D)

∂N̂i(̂r)
∂ξ

=
∂Nk

i (r)
∂x

∂Fx

∂ξ
+

∂Nk
i (r)
∂y

∂Fy

∂ξ
, (112)

∂N̂i(̂r)
∂η

=
∂Nk

i (r)
∂x

∂Fx

∂η
+

∂Nk
i (r)
∂y

∂Fy

∂η
. (113)

◮ This can be expressed shortly as

∇̂N̂i(̂r) = JT
Fk
∇Nk

i (r), (114)

where JT
Fk

is the transpose of the Jacobian matrix of mapping Fk.
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2D and 3D FINITE ELEMENT METHOD
Evaluation of the Matrix Elements in 2D

◮ The Jacobian matrix is given as

JFk (̂r) =









∂Fx

∂ξ
,

∂Fx

∂η
∂Fy

∂ξ
,

∂Fy

∂η









=
[

pk
2 − pk

1 , pk
3 − pk

1

]

. (115)

◮ Computing the inverse of JT
Fk

we get

∇Nk
i (r) = (JT

Fk
)−1∇̂N̂i (̂r) (116)

◮ Matrix elements with gradients of the shape functions are

alok2(i, j) =

∫

Tk

∇Nk
i · ∇Nk

j dr

= | det(JFk)|

∫

T̂

(

(JT
Fk
)−1 ∇̂N̂i · (J

T
Fk
)−1 ∇̂N̂j

)

dr̂. (117)

◮ 3D is more or less a straightforward extension (3 coordinates, 4
shape functions per tetra, etc.).
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

◮ Maxwell’s equations for the static electric field E read

∇× E(r) = 0, (118)

∇ · (ε(r)E(r)) = ρs(r), (119)

where ρs is the charge density and ε is the electric permitttivity.
◮ Since ∇×∇u = 0 for an arbitrary sufficiently differentiable function

u, static electric field E can be expressed using a scalar potential φ

E(r) = −∇φ(r). (120)

◮ Using Maxwell’s equation ∇ · (εE) = ρs potential φ satisfies

∇ · (ε(r)∇φ(r)) = −ρs(r). (121)

◮ If ε is constant, equation (121) reduces to the Laplace equation.

∆φ(r) = −
ρs(r)
ε

, (122)

◮ Thus, in electrostatics we may consider (generalized) Laplace
(Poisson) equation for a scalar function.
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

Consider a homogeneous PE filled (ε = 2.3ε0) circular RG-58/U coaxial
cable with inner radius a = 0.81mm and outer radius b = 2.9mm.
Assume that the voltage on the inner conductor is +5V and on the outer
conductor the voltage is 0V. Since the structure is uniform and
homogeneous it is sufficient to find the scalar potential on a 2D cross
section of the cable by solving the Dirichlet boundary value problem for
Laplace equation

2.3ε0∇
2φ(r) = 0, r ∈ Ω, (123)

φ(r) = 5, r ∈ Γa, (124)

φ(r) = 0, r ∈ Γb. (125)

Here Ω is the 2D cross section of the medium between the inner and
outer conductors, Γa is the boundary of the inner conductor, Γb is the
boundary of the outer conductor, and ε0 is a known constant.
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

Find the solution using (2D) FEM and piece-wise linear nodal functions
as described before.
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Figure: Triangular mesh on the 2D cross section of a coaxial cable (left) and the
solution, i.e., the electrostatic potential (right).
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

Capacitance C tells how much a structure can store an electrical charge

C =
Q
U
, (126)

where U is the potential difference between the conductors, and Q is a
net charge. This can be expressed using electrostatic energy W stored
in the structure

C =
2

U2
W, (127)

where the energy is given by (D = εE)

W =
1
2

∫

Ω

E(r) · D(r) dr. (128)

Using electrostatic potential φ, energy can be further written as

W =
1
2

∫

Ω

ε(r)∇φ(r) · ∇φ(r) dr. (129)
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

Thus, capacitance can be expressed as

C =
1

U2

∫

Ω

ε(r)∇φ(r) · ∇φ(r) dr. (130)

This can be calculated by using the electrostatic FEM system matrix,
i.e., the matrix with elements (without boundary conditions)

Am,n =

∫

spt(um)∩spt(un)

ε(r)∇um(r) · ∇un(r) dr. (131)

On circular domains, both the potential and capacitance have analytical
solutions

φana(r) =
φb − φa

log(b/a)
log(r/a) + φa, (132)

Cana = 2πε/ log(b/a). (133)
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NUMERICAL EXAMPLE
Capacitance Calculation in Electrostatics

Compute Relative Root Mean Square (RMS) error of the numerical
solution

‖φnum − φana‖

‖φana‖
:=

√

∑M
m=1 |φnum(r)− φana(r)|2/M
√

∑M
m=1 |φana(r)|2/M

. (134)
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Solutions of both φ and C seem to
converge with rate O(h2). General
rule is that FEM approximations of
“smooth” functions converge with
rate O(h2p), where p is the order of

the polynomial approximation.
Higher order approximations usually

give better accuracy with less
number of dof, but implementations
become (much) more complicated.
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SUMMARY

FEM for finding approximate solutions of boundary value problems
arising from partial differential equation-based mathematical modeling
of physical phenomena can be summarized as:

1. Develop a BVP for a PDE with information of the domain and
boundary.

2. Derive weak formulation of the BVP with appropriate boundary
conditions.

3. Generate the mesh, i.e., divide domain Ω into a finite number of
simple elements.

4. Find appropriate conforming and unisolvent discrete FE spaces.

5. Compute the matrix elements and assemble the matrix.

6. Solve the matrix equation.

7. Compute wanted parameters.
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