Introduction to Finite Element Method

Pasi Ylä-Oijala

April 24 and 28, 2014

INTRODUCTION

- Short introduction to finite element method (FEM).
- Based on course Numerical Methods in Electromagnetics, given at Department of Radio Science and Engineering, Aalto University.
- This course consists of lectures and (Matlab) exercises.
- Contact and questions: pasi.yla-oijala(at)aalto.fi.

Content:

1. Introduction
2. General recipe of FEM
3. 1D scalar FEM
4. 2D (3D) scalar FEM
5. Example - Capacitance computation in electrostatics

INTRODUCTION

- During the last few decades the importance of numerical simulations has significantly increased. Reasons for this are the ever increasing capacity of computers and the development of more and more sophisticated numerical methods and algorithms.
- The outcome of this is the recent arising of the Computational Science and Engineering, not only as a secondary "cost saving field", but as an independent scientific domain.
- Finite element method (FEM) is one of the most versatile and widely used numerical techniques for finding approximate solutions of boundary value problems arising from partial differential equation-based mathematical modeling of physical phenomena.
- FEM is applied e.g., in structural analysis, fluid dynamics, solid mechanics, acoustics, and electromagnetics.

INTRODUCTION

Applications and Numerical Methods in Electromagnetics

INTRODUCTION

General Idea of FEM

The idea in FEM is to convert an infinite dimensional continuous linear operator equation into a finite dimensional discrete matrix equation

$$
\begin{equation*}
\mathcal{D}[u]=v \quad \Longrightarrow \quad \boldsymbol{A x}=\boldsymbol{b} \text {. } \tag{1}
\end{equation*}
$$

Generally, FEM can be understood to consist of the following steps:

1. Geometrical modeling (solid modeling, mesh generation).
2. Physical and mathematical modeling (PDE, boundary conditions, material parameters, weak formulation, function spaces).
3. Numerical modeling (discrete FE spaces).
4. Implementation (computer programming).
5. Computations and simulations (matrix assembly, solution of linear system).
6. Post-processing (visualization, parameter computation).

INTRODUCTION

From Design Through Mathematical Formulation and Programming to Simulations

Design:

Mathematical Formulation:

For a given $\boldsymbol{J} \in \mathcal{H}_{\text {Div }}(\Omega)$ find $\boldsymbol{E} \in \mathcal{H}_{\text {Cur }}(\Omega)$ satisfying

$$
\left\langle\nabla \times \boldsymbol{w}, \frac{1}{\mu_{r}} \nabla \times \boldsymbol{E}\right\rangle-k_{0}^{2}\left\langle\boldsymbol{w}, \varepsilon_{r} \boldsymbol{E}\right\rangle=i \omega \mu_{0}\langle\boldsymbol{w}, \boldsymbol{J}\rangle, \quad \text { in } \Omega,
$$

for all $\boldsymbol{w} \in \mathcal{H}_{C u r l}(\Omega)$ and $\gamma_{t} \boldsymbol{E}=0$ on Γ.

Solution:

C++ Code:

```
const UINT N = A.get_M();
const UINT nele = mesh->get_nele();
sparse_mat<bool> E(nele,N);
for (UINT ele = 0; ele != nele; ++ele)
E.register_element(ele, 3);
E.register_complete();
for (UINT ele = 0; ele != nele; ++ele)
{const auto &row = rwgs(ele);
for (unsigned int j = 0; j != row.get_M();
++j)
E.push_in(ele, abs(row(j)) - 1); }
E.finalize();
const sparse_mat<bool> *const ET2 =
```


INTRODUCTION

Notations

- Points in $\mathbf{R}^{n}, n=1,2,3$, are denoted by $\boldsymbol{r}=x, \boldsymbol{r}=(x, y)$, and $\boldsymbol{r}=(x, y, z)$.
- Unit vectors in rectangular coordinate system are $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}$ and \boldsymbol{e}_{z}.
- Vectors are denoted by boldface and vector fields by capitals

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=F_{x}(\boldsymbol{r}) \boldsymbol{e}_{x}+F_{y}(\boldsymbol{r}) \boldsymbol{e}_{y}+F_{z}(\boldsymbol{r}) \boldsymbol{e}_{z} \tag{2}
\end{equation*}
$$

- Gradient of a scalar function is

$$
\begin{equation*}
\nabla f(\boldsymbol{r})=\frac{\partial f(\boldsymbol{r})}{\partial x} \boldsymbol{e}_{x}+\frac{\partial f(\boldsymbol{r})}{\partial y} \boldsymbol{e}_{y}+\frac{\partial f(\boldsymbol{r})}{\partial z} \boldsymbol{e}_{z} \tag{3}
\end{equation*}
$$

- Divergence of a vector function is

$$
\begin{equation*}
\nabla \cdot \boldsymbol{F}(\boldsymbol{r})=\frac{\partial F_{x}(\boldsymbol{r})}{\partial x}+\frac{\partial F_{y}(\boldsymbol{r})}{\partial y}+\frac{\partial F_{z}(\boldsymbol{r})}{\partial z} \tag{4}
\end{equation*}
$$

- Curl of a vector function is

$$
\begin{equation*}
\nabla \times \boldsymbol{F}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \boldsymbol{e}_{x}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \boldsymbol{e}_{y}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \boldsymbol{e}_{z} \tag{5}
\end{equation*}
$$

- Laplacian of a scalar function is

$$
\begin{equation*}
\Delta f(\boldsymbol{r})=\nabla \cdot \nabla f(\boldsymbol{r})=\frac{\partial^{2} f(\boldsymbol{r})}{\partial_{x^{2}}}+\frac{\partial^{2} f(\boldsymbol{r})}{\partial_{y^{2}}}+\frac{\partial^{2} f(\boldsymbol{r})}{\partial_{z^{2}}}\left(=\nabla^{2} f(\boldsymbol{r})\right) \tag{6}
\end{equation*}
$$

INTRODUCTION

Gauss Formulas and Inner Product

- Let Ω be a simply connect closed domain in \mathbf{R}^{n} with sufficient smooth boundary Γ, and unit normal vector \boldsymbol{n}. Then

$$
\begin{align*}
\int_{\Omega} \nabla u d \Omega & =\int_{\Gamma} \boldsymbol{n} u d \Gamma \tag{7}\\
\int_{\Omega} \nabla \cdot \boldsymbol{F} d \Omega & =\int_{\Gamma} \boldsymbol{n} \cdot \boldsymbol{F} d \Gamma \tag{8}\\
\int_{\Omega} \nabla \times \boldsymbol{F} d \Omega & =\int_{\Gamma} \boldsymbol{n} \times \boldsymbol{F} d \Gamma \tag{9}
\end{align*}
$$

- $L^{2}(\Omega)$ symmetric (inner) product (without complex conjugate!)

$$
\begin{equation*}
\langle u, v\rangle=\int_{\Omega} u(\boldsymbol{r}) v(\boldsymbol{r}) d \Omega \quad \text { or } \quad\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\int_{\Omega} \boldsymbol{u}(\boldsymbol{r}) \cdot \boldsymbol{v}(\boldsymbol{r}) d \Omega \tag{10}
\end{equation*}
$$

- In addition, denote

$$
\begin{equation*}
\langle u, v\rangle_{\Gamma}=\int_{\Gamma} u(\boldsymbol{r}) v(\boldsymbol{r}) d \Gamma \quad \text { or } \quad\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{\Gamma}=\int_{\Gamma} \boldsymbol{u}(\boldsymbol{r}) \cdot \boldsymbol{v}(\boldsymbol{r}) d \Gamma \tag{11}
\end{equation*}
$$

GENERAL RECIPE

Boundary Value Problem

- Let Ω be an open bounded domain in \mathbf{R}^{n} with sufficiently smooth boundary Γ.
- Consider the following partial differential equation

$$
\begin{equation*}
-\nabla \cdot(\alpha \nabla u(\boldsymbol{r}))+\beta u(\boldsymbol{r})=f(\boldsymbol{r}), \quad \boldsymbol{r} \in \Omega . \tag{12}
\end{equation*}
$$

- Divide Γ into two parts $\Gamma=\Gamma_{D} \cup \Gamma_{N}$ so that $\Gamma_{D} \cap \Gamma_{N}=\emptyset$.
- Consider two types of boundary conditions:

$$
\begin{align*}
\left.u\right|_{\Gamma_{D}} & =g^{D}, & & \text { Dirichlet ("essential") } \tag{13}\\
\left.\alpha \frac{\partial u}{\partial n}\right|_{\Gamma_{N}} & =g^{N}, & & \text { Neumann ("natural") } \tag{14}
\end{align*}
$$

Here u is a unknown function, α and β are given coefficients, f, g^{D} and g^{N} are known functions.

- Solutions of this boundary value problem (BVP) are called strong solutions - "equality holds at every point".
- In FEM we, however, consider: weak solutions - "equality holds in weiahted averaae sense".

GENERAL RECIPE

Weak Formulation

- Define Sobolev spaces

$$
\begin{align*}
H^{0}(\Omega) & :=\left\{u \in L^{2}(\Omega)\right\}, \tag{15}\\
H^{1}(\Omega) & :=\left\{u \in L^{2}(\Omega) \text { and } \nabla u \in\left(L^{2}(\Omega)\right)^{3}\right\}, \tag{16}
\end{align*}
$$

the Dirichlet and Neumann trace spaces

$$
\begin{array}{cl}
\gamma_{D} u:=\left.u\right|_{\Gamma_{D}} & : \quad H^{1}(\Omega) \mapsto H^{1 / 2}\left(\Gamma_{D}\right), \\
\gamma_{N} u:=\partial u /\left.\partial n\right|_{\Gamma_{N}} & : \quad H^{1}(\Omega) \mapsto H^{-1 / 2}\left(\Gamma_{N}\right), \tag{18}
\end{array}
$$

and the dual space of $H^{1}(\Omega),\left(H^{1}(\Omega)\right)^{\prime}=H^{-1}(\Omega)$.

- Weak formulation of BVP (12) - (14) reads:

For given $f \in\left(H^{1}(\Omega)\right)^{\prime}, g^{D} \in H^{1 / 2}(\Gamma)$ and $g^{N} \in H^{-1 / 2}(\Gamma)$, find such $u \in H^{1}(\Omega), \gamma_{D} u=g^{D}$, that

$$
\begin{equation*}
\langle\nabla w, \alpha \nabla u\rangle+\langle w, \beta u\rangle=-\left\langle w, g^{N}\right\rangle_{\Gamma_{N}}+\langle w, f\rangle, \tag{19}
\end{equation*}
$$

holds for all $w \in H^{1}(\Omega), \gamma_{D} w=0$.

GENERAL RECIPE

Finite Element Spaces

- The next step in FEM is to find a suitable set of finite elements (FE).
- Generally, FE is a triple

$$
\begin{equation*}
\left(T, P_{T}, \Sigma_{T}\right) \tag{20}
\end{equation*}
$$

where

- T is a geometric domain ("an element")
- P_{T} is a space of functions (polynomials) on T ("an approximation")
- Σ_{T} is a set of linear functionals on P_{T} (degrees of freedom, dof).
- An union of all (T, P_{T}, Σ_{T}) is called a (global) FE space.
- Important properties of a FE (space):
- FE $\left(T, P_{T}, \Sigma_{T}\right)$ is said to be unisolvent if specifying a value for each dof in Σ_{T} uniquely determines a function in P_{T}.
- FE $\left(T, P_{T}, \Sigma_{T}\right)$ is said to be H conforming if the corresponding FE space is a subspace of a function space H.
- In the following we shall use the following important result: "The FE space of piecewise continuous polynomials is H^{1} conforming and unisolvent".

GENERAL RECIPE

Discrete Problem - Basis Functions

- Assume that we have a discrete FE space U^{h} that is H^{1} conforming and unisolvent.
- Discrete problem can now be formulated as: Find such $u^{h} \in U^{h}$, $\left.u^{h}\right|_{\gamma_{D}}=g^{D}$, that

$$
\begin{equation*}
\left\langle\nabla w^{h}, \alpha \nabla u^{h}\right\rangle+\left\langle w^{h}, \beta u^{h}\right\rangle=-\left\langle w^{h}, g^{N}\right\rangle_{\Gamma_{N}}+\left\langle w^{h}, f\right\rangle \tag{21}
\end{equation*}
$$

holds for all $w^{h} \in U^{h},\left.w^{h}\right|_{\gamma_{D}}=0$.

- In practice, u is approximated with a linear combination of basis functions $u_{1}, \ldots, u_{N} \in U^{h}$

$$
\begin{equation*}
u(\boldsymbol{r}) \approx \sum_{n=1}^{N} c_{n} u_{n}(\boldsymbol{r})=u^{h}(\boldsymbol{r}) \tag{22}
\end{equation*}
$$

- Then choose a set of testing functions $w_{1}, \ldots, w_{M} \in U^{h}$. Usually we have $w_{m}=u_{m}$ for all m (excluding the testing functions on Γ_{D}) and $M=N$.

GENERAL RECIPE

Discrete Problem - Matrix Equation

- This gives a set of linear equations, i.e., a matrix equation

$$
\begin{equation*}
\boldsymbol{A x}=\boldsymbol{b} \tag{23}
\end{equation*}
$$

where \boldsymbol{A} is $N \times N$ system matrix, $\boldsymbol{x}=\left[c_{1}, \ldots, c_{N}\right]^{T}$ is the coefficient vector to be found, and \boldsymbol{b} is $N \times 1$ source vector.

- Elements of \boldsymbol{A} and \boldsymbol{b} are given by

$$
\begin{align*}
A_{m n} & =\left\langle\nabla u_{m}, \alpha \nabla u_{n}\right\rangle+\left\langle u_{m}, \beta u_{n}\right\rangle, \\
& =\int_{\Omega_{m n}} \alpha(\boldsymbol{r}) \nabla u_{m}(\boldsymbol{r}) \cdot \nabla u_{n}(\boldsymbol{r}) d \Omega+\int_{\Omega_{m n}} \beta(\boldsymbol{r}) u_{m}(\boldsymbol{r}) \nabla u_{n}(\boldsymbol{r}) d \Omega, \tag{24}\\
b_{m} & =\left\langle u_{m}, f\right\rangle-<u_{m}, g^{N}>_{\Gamma_{N}} \\
& =\int_{\operatorname{spt}\left(u_{m}\right)} u_{m}(\boldsymbol{r}) f(\boldsymbol{r}) d \Omega-\int_{\operatorname{spt}\left(u_{m}\right) \cap \Gamma_{N}} u_{m}(\boldsymbol{r}) g^{N}(\boldsymbol{r}) d \Gamma, \tag{25}
\end{align*}
$$

for all $n, m=1, \ldots, N$. Here $\Omega_{m n}=\operatorname{spt}\left(u_{m}\right) \cap \operatorname{spt}\left(u_{n}\right)$,

- Matrix \boldsymbol{A} is sparse (most elements are 0) and symmetric.

1D FINITE ELEMENT METHOD

Boundary Value Problem

- Next we consider more details of FEM implementations in 1D.
- Consider the following second order differential equation in 1D

$$
\begin{equation*}
-\frac{d}{d x}\left(\alpha \frac{d u(x)}{d x}\right)+\beta u(x)=f(x), \quad x \in[a, b] \tag{26}
\end{equation*}
$$

where u is the unknown function to be found, α and β are known coefficients and f is a given function.

- Boundary conditions at $x=a$ and $x=b$ are either

$$
\begin{equation*}
u(x)=g^{D}(x), \quad \text { Dirichlet }, \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha \frac{d u}{d x}(x)=g^{N}(x), \quad \text { Neumann } \tag{28}
\end{equation*}
$$

1D FINITE ELEMENT METHOD

- With Dirichlet boundary condition the weak formulation reads

$$
\begin{equation*}
\left\langle\frac{d}{d x} w, \alpha \frac{d u}{d x}\right\rangle+\langle w, \beta u\rangle=\langle w, f\rangle, \quad u(a)=g^{D}(a), u(b)=g^{D}(b) \tag{29}
\end{equation*}
$$

Here the testing function w vanishes at the end points of the interval $[a, b]$, i.e., $w(a)=0$ and $w(b)=0$.

- With Neumann boundary condition the weak formulation becomes

$$
\begin{equation*}
\left\langle\frac{d}{d x} w, \alpha \frac{d u}{d x}\right\rangle+\langle w, \beta u\rangle=\langle w, f\rangle-w(b) g^{N}(b)+w(a) g^{N}(a) . \tag{30}
\end{equation*}
$$

- In the following, the weak formulation is first discretized using testing functions that do not vanish at the end points, and the boundary conditions are later enforced to the discretized matrix equation.

1D FINITE ELEMENT METHOD

Mesh and Finite Element Space

Figure: 1D mesh.

- Divide interval $[a, b]$ into small line segments, called elements, $e_{k}=\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, K$.
- Approximate unknown function u with piece-wise continuous first order polynomials.
- $\mathrm{FE}\left(T, P_{T}, \Sigma_{T}\right)$ is then given by

$$
\begin{equation*}
T=e_{k}, \quad P_{T}=P^{(1)}(x), \quad \Sigma_{T}=\left[u^{h}\left(x_{k}\right), u^{h}\left(x_{k+1}\right)\right] \tag{31}
\end{equation*}
$$

- Geometric element is interval e_{k}.
- Approximating functions $P^{(1)}(x)$ are first order polynomials of x on e_{k}.
- dof are the values of the approximation u^{h} at the end points of e_{k}.

1D FINITE ELEMENT METHOD

Basis Functions

- Function u is approximated as a linear combination of piece-wise linear continuous basis functions u_{n}

$$
\begin{equation*}
u(\boldsymbol{r}) \approx u^{h}(\boldsymbol{r})=\sum_{n=1}^{N_{N}} c_{n} u_{n}(\boldsymbol{r}) \tag{32}
\end{equation*}
$$

Here N_{N} is the number of the nodes of the mesh (points x_{k}).

- Piece-wise linear functions are defined as

Fioure: A linear basis function in 1D.

1D FINITE ELEMENT METHOD

Basis Functions

Figure: Linear approximation of a 1D function and two linear shape functions.

- This approximation is unisolvent, the value of u^{h} at each node x_{n} uniquely defines the value of the approximation u^{h}.
- It is conforming in $H^{1}([a, b])$.
- It gives linear interpolation on each element e_{k}.
- The total number of dof is the number of nodes (division points).
- Basis functions are defined on two adjacent elements, excluding the basis functions associated to the end points $x=a$ and $x=b$.

1D FINITE ELEMENT METHOD

Shape Functions

- Define two linear functions on an interval e_{k}

$$
\begin{equation*}
u_{k}^{+}(x)=\frac{x-x_{k-1}}{L_{k-1}}, \quad u_{k}^{-}(x)=\frac{x_{k+1}-x}{L_{k}} \tag{34}
\end{equation*}
$$

and $L_{k}=x_{k+1}-x_{k}$ is the length of the interval e_{k}.

- These functions are restrictions of the the linear basis functions on e_{k}, i.e., $\left.u_{n}\right|_{e_{k}}$, and are sometimes called linear shape functions.
- Piece-wise linear functions for $n=2, \ldots, N-1$ are now given by

$$
u_{n}(x)=\left\{\begin{array}{cc}
u_{n}^{+}(x), & \text { if } x \in e_{n-1}=\left[x_{n-1}, x_{n}\right] \tag{35}\\
u_{n}^{-}(x), & \text { if } x \in e_{n}=\left[x_{n}, x_{n+1}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

and for $n=1$ and $n=N=K+1$ they are

$$
\begin{aligned}
u_{1}(x) & =u_{1}^{-}(x) \\
u_{N}(x) & =u_{N}^{+}(x)
\end{aligned}
$$

1D FINITE ELEMENT METHOD

Testing Functions and Matrix Equation

- Using the same piece-wise linear functions as the testing functions (Galerkin's method), i.e., $w_{m}=u_{m}$, for all m, gives a matrix equation

$$
\begin{equation*}
\boldsymbol{A x}=\boldsymbol{b} . \tag{36}
\end{equation*}
$$

Elements of \boldsymbol{A} and \boldsymbol{b} are:

1. Dirichlet boundary condition:

$$
\begin{align*}
A_{m n} & =\left\langle\frac{d u_{m}}{d x}, \alpha \frac{d u_{n}}{d x}\right\rangle+\left\langle u_{m}, \beta u_{n}\right\rangle \tag{37}\\
b_{m} & =\left\langle u_{m}, f\right\rangle \tag{38}
\end{align*}
$$

2. Neumann boundary condition:

$$
\begin{align*}
A_{m n} & =\left\langle\frac{d u_{m}}{d x}, \alpha \frac{d u_{n}}{d x}\right\rangle+\left\langle u_{m}, \beta u_{n}\right\rangle \tag{39}\\
b_{m} & =\left\langle u_{m}, f\right\rangle-u_{m}(a) g^{N}(a)+u_{m}(b) g^{N}(b) \tag{40}
\end{align*}
$$

- Dirichlet: Testing functions should vanish at the end points and boundary data has to be enforced separately.
- Neumann: Boundary data appears in the weak formulation.

1D FINITE ELEMENT METHOD

- Elements of matrix \boldsymbol{A} and vector \boldsymbol{b} (without the boundary conditions) could be evaluated with the following simple looking algorithm:

Zero matrix \boldsymbol{A} and vector \boldsymbol{b}.
for $m=1, \ldots, N$ do
$\boldsymbol{b}(m)=\int_{\operatorname{spt}\left(u_{m}\right)} u_{m}(x) f(x) d x$
for $n=1, \ldots, N$ do

$$
\boldsymbol{A}(m, n)=\int_{\operatorname{spt}\left(u_{m}\right) \cap \operatorname{spt}\left(u_{n}\right)}\left(\alpha(x) \frac{d u_{m}(x)}{d x} \frac{d u_{n}(x)}{d x}+\beta(x) u_{m}(x) u_{n}(x)\right) d x
$$

end for end for

- This algorithm is very inefficient because by looping over the basis and testing functions the integrals will be computed several times.
- Can we do this more efficiently?

1D FINITE ELEMENT METHOD

Local matrices

- Define two 2×2 "local matrices" and a 2×1 "local vector" of element e_{k}

$$
\begin{align*}
\operatorname{alok} 1(i, j) & =\int_{e_{k}} N_{i}^{k}(x) N_{j}^{k}(x) d x \tag{41}\\
\operatorname{alok} 2(i, j) & =\int_{e_{k}} \frac{d N_{i}^{k}(x)}{d x} \frac{d N_{j}^{k}(x)}{d x} d x \tag{42}\\
\operatorname{blok} 1(i) & =\int_{e_{k}} N_{i}^{k}(x) f(x) d x \tag{43}
\end{align*}
$$

$i, j=1,2$, and $N_{i}^{k}=\left.u_{n}\right|_{e_{e}}, i=1,2$, are linear shape functions of element e_{k}, i.e., the " u^{+}" and " u^{-}" functions defined before.

- Assume that coefficients α and β have constant values α_{k} and β_{k} in element e_{k}, and that \boldsymbol{A} and \boldsymbol{b} are initialized with zeros. Then \boldsymbol{A} and vector \boldsymbol{b} can be assembled using the following algorithms:

1D FINITE ELEMENT METHOD

System Matrix Assembly

for $k=1, \ldots, K$ do

\% Compute local matrices alok1 and alok2 for element K for $i=1, \ldots, 2$ do

$$
\text { for } j=1, \ldots, 2 \text { do }
$$

$$
\operatorname{alok} 1(i, j) \leftarrow \int_{e_{k}} N_{i}^{k}(x) N_{j}^{k}(x) d x
$$

$$
\operatorname{alok} 2(i, j) \leftarrow \int_{e_{k}} \frac{d N_{i}^{k}(x)}{d x} \frac{d N_{j}^{k}(x)}{d x} d x
$$

end for
end for
\% Add local matrices to the global one
for $i=1, \ldots, 2$ do
for $j=1, \ldots, 2$ do
$\boldsymbol{A}\left(n_{i}^{k}, n_{j}^{k}\right) \leftarrow \boldsymbol{A}\left(n_{i}^{k}, n_{j}^{k}\right)+\alpha_{k} \operatorname{alok} 2(i, j)+\beta_{k} \operatorname{alok} 1(i, j)$
end for
end for
end for

- n_{i}^{k}, n_{i}^{k} and i, j are "global" and "local" indeces of the nodes of e_{k}.

1D FINITE ELEMENT METHOD

Source Vector Assembly

for $k=1, \ldots, K$ do
Compute local vector blok1
for $i=1, \ldots, 2$ do
blok1 $(i) \leftarrow \int_{e_{k}} N_{i}^{k}(x) f(x) d x$
end for
Add local vector to the global one
for $i=1, \ldots, 2$ do
$\boldsymbol{b}\left(n_{i}^{k}\right) \leftarrow \boldsymbol{b}\left(n_{i}^{k}\right)+\operatorname{blok} 1(i)$
end for
end for

- The benefit of these algorithms compared to the previous one is that by looping over the elements of the mesh (once), an integral over each element is computed only once.
- The drawback is that we would need additional bookkeeping of the global and local indeces. This, however, is rather trivial, as will be seen later.

1D FINITE ELEMENT METHOD

Enforcing Boundary Conditions

- Neumann boundary data is given by

$$
\begin{equation*}
<u_{m}, g^{N}>=u_{m}(b) g^{N}(b)-u_{m}(a) g^{N}(a) \tag{44}
\end{equation*}
$$

- Because testing function get value one at points $x=a$ and $x=b$

$$
\begin{equation*}
<u_{m}, g^{N}>=g^{N}(b)-g^{N}(a) . \tag{45}
\end{equation*}
$$

- Neumann boundary data $\left(g^{N}\right)$ is added to vector \boldsymbol{b} as

$$
\begin{equation*}
\boldsymbol{b}(b n)=\boldsymbol{b}(b n) \pm g^{N}\left(x_{b n}\right), \tag{46}
\end{equation*}
$$

where $b n$ is an index of a boundary node $x_{b n}$.

1D FINITE ELEMENT METHOD

Enforcing Boundary Conditions

- Dirichlet boundary data is given by

$$
\begin{equation*}
u^{h}(a)=g^{D}(a) \text { and } u^{h}(b)=g^{D}(b) \tag{47}
\end{equation*}
$$

- To set the Dirichlet data we need to remove the testing functions associated to the boundary nodes $b n$ (if we have used testing functions defined at the boundary nodes). This agrees to setting rows $b n$ of matrix \boldsymbol{A} and elements $b n$ of \boldsymbol{b} to zero.
- Next value one is set to the diagonal of matrix A and wanted boundary data is set to vector \boldsymbol{b}

- The problem is that this leads to a non-symmetric matrix.

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- Consider next numerical evaluation of the matrix and vector elements

$$
\begin{align*}
\operatorname{alok} 1(i, j) & =\int_{e_{k}} N_{i}^{k}(x) N_{j}^{k}(x) d x \tag{49}\\
\operatorname{alok} 2(i, j) & =\int_{e_{k}} \frac{d N_{i}^{k}(x)}{d x} \frac{d N_{j}^{k}(x)}{d x} d x \tag{50}\\
\operatorname{blok} 1(i) & =\int_{e_{k}} N_{i}^{k}(x) f(x) d x \tag{51}
\end{align*}
$$

- 1D these elements can be in most cases computed analytically.
- Next we, however, introduce their numerical evaluation.

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- Define a reference element $\hat{e}=[0,1]$ and a linear mapping from \hat{e} to

$$
\begin{align*}
& e_{k}=\left[a_{k}, b_{k}\right] \\
& x=\mathcal{F}_{k}(\xi)=\sum_{i=1}^{2} \hat{N}_{i}(\xi) p_{i}^{k}=a_{k} \hat{N}_{1}(\xi)+b_{k} \hat{N}_{2}(\xi) \tag{52}\\
&=a_{k}+\left(b_{k}-a_{k}\right) \xi=a_{k}+L_{k} \xi,
\end{align*}
$$

where p_{i}^{k} are the end points of $e_{k}\left(p_{1}^{k}=a_{k}, p_{2}^{k}=b_{k}\right)$ and \hat{N}_{i}^{k} are linear shape functions on \hat{e} defined as

$$
\begin{array}{lc}
\hat{N}_{1}(\xi)=1-\xi, & \text { (the "minus" function) }, \\
\hat{N}_{2}(\xi)=\xi, & \text { (the "plus" function). }
\end{array}
$$

Figure: Mapping \mathcal{F}_{k} from the reference element \hat{e} to an element e_{k}.

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- Assume that we have a numerical quadrature rule on the reference element

$$
\begin{equation*}
\int_{\hat{e}} g(\xi) d \xi=\int_{0}^{1} g(\xi) d \xi \approx \sum_{p=1}^{P} \omega_{p} g\left(\xi_{p}\right) \tag{55}
\end{equation*}
$$

where ξ_{p} and ω_{p} are the integration points and weights on \hat{e}.

- Now an integral on e_{k} can be computed numerically using an integral quadrature defined on the reference element \hat{e}

$$
\begin{equation*}
\int_{e_{k}} f(x) d x=\int_{\hat{e}} f\left(\mathcal{F}_{k}(\xi)\right)\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| d \xi \approx\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| \sum_{p=1}^{P} \omega_{p} f\left(\mathcal{F}_{k}\left(\xi_{p}\right)\right) \tag{56}
\end{equation*}
$$

where $J_{\mathcal{F}_{k}}$ is the Jacobian of \mathcal{F}_{k}

$$
\begin{equation*}
J_{\mathcal{F}_{k}}=\frac{\partial \mathcal{F}_{k}}{\partial_{\xi}}=b_{k}-a_{k}=L_{k} . \tag{57}
\end{equation*}
$$

- In other words, for a linear mapping $\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right|$ is the length of e_{k}.

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- Matrix elements including products of linear shape functions read

$$
\begin{equation*}
\int_{e_{k}} N_{i}^{k}(x) N_{j}^{k} d x=\int_{\hat{e}} N_{i}^{k}\left(\mathcal{F}_{k}(\xi)\right) N_{j}^{k}\left(\mathcal{F}_{k}(\xi)\right)\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| d \xi . \tag{58}
\end{equation*}
$$

- Define

$$
\begin{equation*}
N_{i}^{k}(x):=\hat{N}_{i}\left(\mathcal{F}_{k}^{-1}(x)\right)=\hat{N}_{i}(\xi) . \tag{59}
\end{equation*}
$$

- Then integral (58) can be evaluated using integration points and weights, and the shape functions defined on the reference element \hat{e}

$$
\begin{gather*}
\int_{\hat{e}} N_{i}^{k}\left(\mathcal{F}_{k}(\xi)\right) N_{j}^{k}\left(\mathcal{F}_{k}(\xi)\right)\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| d \xi=\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| \int_{0}^{1} \hat{N}_{i}(\xi) \hat{N}_{j}(\xi) d \xi \\
\left.\approx L_{k} \sum_{p=1}^{P} \omega_{p} \hat{N}_{i}\left(\xi_{p}\right) \hat{N}_{j}\left(\xi_{p}\right)\right) \tag{60}
\end{gather*}
$$

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- Using the chain rule, derivative of a nodal shape function is

$$
\begin{equation*}
\frac{d \hat{N}_{i}(\xi)}{d \xi}=\frac{d N_{i}^{k}(x)}{d x} \frac{d \mathcal{F}_{k}}{d \xi} \quad \text { i.e., } \quad \frac{d N_{i}^{k}(x)}{d x}=\left(\frac{d \mathcal{F}_{k}}{d \xi}\right)^{-1} \frac{d \hat{N}_{i}(\xi)}{d \xi} \tag{61}
\end{equation*}
$$

- Since

$$
\begin{equation*}
\frac{d \mathcal{F}_{k}}{d \xi}=b_{k}-a_{k}=L_{k}, \quad\left(\frac{d \mathcal{F}_{k}}{d \xi}\right)^{-1}=\frac{1}{L_{k}} \tag{62}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{d \hat{N}_{i}}{d \xi}=L_{k} \frac{d N_{i}^{k}}{d x} \quad \text { and } \quad \frac{d N_{i}^{k}}{d x}=\frac{1}{L_{k}} \frac{d \hat{N}_{i}}{d \xi} \tag{63}
\end{equation*}
$$

- Further, since $\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right|=L_{k}, d \hat{N}_{1} / d \xi=-1$ and $d \hat{N}_{2} / d \xi=1$, we get

$$
\begin{gather*}
\int_{e_{k}} \frac{d N_{i}^{k}(x)}{d x} \frac{d N_{j}^{k}(x)}{d x} d x=\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| \int_{\hat{e}}\left(\frac{d \mathcal{F}_{k}}{d_{\xi}}\right)^{-1} \frac{d \hat{N}_{i}(\xi)}{d \xi}\left(\frac{d \mathcal{F}_{k}}{d_{\xi}}\right)^{-1} \frac{d \hat{N}_{j}(\xi)}{d \xi} d \xi \\
=L_{k} \int_{\hat{e}}\left(\frac{1}{L_{k}} \frac{d \hat{N}_{i}(\xi)}{d \xi}\right)\left(\frac{1}{L_{k}} \frac{d \hat{N}_{j}(\xi)}{d \xi}\right) d \xi= \begin{cases}\frac{1}{L_{k}} & \text { if } i=j, \\
\frac{-1}{L_{k}} & \text { if } i \neq j .\end{cases} \tag{64}
\end{gather*}
$$

1D FINITE ELEMENT METHOD

Computing the Matrix Elements

- To summarize, the elements of the local matrices and vector are

$$
\begin{align*}
\operatorname{alok} 1(i, j) & \left.\approx L_{k} \sum_{p=1}^{P} \omega_{p} \hat{N}_{i}\left(\xi_{p}\right) \hat{N}_{j}\left(\xi_{p}\right)\right), \tag{65}\\
\operatorname{alok} 2(i, j) & = \begin{cases}\frac{1}{L_{k}} & \text { if } i=j, \\
\frac{-1}{L_{k}} & \text { if } i \neq j,\end{cases} \tag{66}\\
\operatorname{blok} 1(i) & \approx L_{k} \sum_{p=1}^{P} \omega_{p} \hat{N}_{i}\left(\xi_{p}\right) f\left(\mathcal{F}_{k}\left(\xi_{p}\right)\right) . \tag{67}
\end{align*}
$$

- The reason for reducing integrals to the reference element is that we need to generate the integration points and weights only once.
- Note that the formula for alok2 is valid only for linear functions.

1D FINITE ELEMENT METHOD

Mesh Data Structures

- Define two mesh data structures, coordinates of the nodes of the elements

$$
\begin{equation*}
\operatorname{coord}=\left[x_{1}, x_{2}, \ldots, x_{K+1}\right] \tag{68}
\end{equation*}
$$

and the element topology, the indeces of the nodes of the elements,

$$
\text { etopol }=\left[\begin{array}{l}
n_{1,1}, n_{1,2}, \ldots, n_{1, K} \tag{69}\\
n_{2,1}, n_{2,2}, \ldots, n_{2, K}
\end{array}\right]
$$

- Coordinates of the nodes of element k :

$$
\begin{equation*}
\operatorname{coord}(\text { etopol }(1, k)) \text { and } \operatorname{coord}(\text { etopol }(2, k)) . \tag{70}
\end{equation*}
$$

- Global node indeces n_{i}^{k} and n_{j}^{k} :

$$
\begin{equation*}
n_{i}^{k}=\operatorname{etopol}(i, k) \text { and } n_{j}^{k}=\operatorname{etopol}(j, k) . \tag{71}
\end{equation*}
$$

1D FINITE ELEMENT METHOD

- "Mesh" of interval $[a, b]$ including K elements and $K+1$ nodes:

$$
\begin{equation*}
\mathrm{x}=\operatorname{linspace}(\mathrm{a}, \mathrm{~b}, \mathrm{~K}+1) \tag{72}
\end{equation*}
$$

- coord and etopol:

$$
\begin{equation*}
\operatorname{coord}=\mathrm{x} ; \quad \text { etopol }=[1: \mathrm{K}, 2: \mathrm{K}+1] ; \tag{73}
\end{equation*}
$$

- Integration points and weight on the reference element $[0,1]$ (P is the number of points):

$$
\begin{equation*}
[\mathrm{xi}, \mathrm{w}]=\text { gausslegendre(P); } \tag{74}
\end{equation*}
$$

- Linear shape functions at the integration points ξ :

$$
\begin{equation*}
\mathrm{N} 1=1-\mathrm{xi} ; \quad \mathrm{N} 2=\mathrm{xi} ; \tag{75}
\end{equation*}
$$

1D FINITE ELEMENT METHOD

On Matlab Programming - Numerical Integration

- Integration points on an element $e_{k}=\left[a_{k}, b_{k}\right]$:

$$
\begin{equation*}
\mathrm{xk}=\mathrm{ak}+\mathrm{xi} *(\mathrm{bk}-\mathrm{ak}) ; \tag{76}
\end{equation*}
$$

- Integral of a function f times a shape function N over e_{k} :

$$
\begin{equation*}
\int_{e_{k}} f(x) N(x) d x=\operatorname{det} \mathrm{Jk} *(\operatorname{fun}(\mathrm{xk}) \cdot * \mathrm{~N}) * \mathrm{w} \tag{77}
\end{equation*}
$$

Here $N=N(\xi)$ (values of a shape function at points ξ on the reference element) and fun (xk) = @(xk) f(xk) (values of function f at points $x k$ on the element e_{k}) should be row vectors and w (weights on the reference element) should be a column vector, and detJk is the Jacobian determinant of mapping \mathcal{F}_{k}.

- A function handle can be used to compute $f(x)=x^{2}$ at n points x on interval $[a, b]$ e.g., as

$$
\begin{aligned}
& \text { fun }=@(x) x .^{2} \\
& x=\operatorname{linspace}(a, b, n) ; \\
& \mathrm{f}=\operatorname{fun}(x)
\end{aligned}
$$

1D FINITE ELEMENT METHOD

On Matlab Programming - Boundary Conditions

- Assume that the global indeces of the end points of an element division of interval $[a, b]$ are 1 and $K+1$.
- Assume also that matrix \boldsymbol{A} and vector \boldsymbol{b} have been assembled using testing functions that do not vanish at the boundary nodes.
- Neumann boundary data $\mathrm{gNa}=g^{N}(a), \mathrm{gNb}=g^{N}(b)$ is added to source vector \boldsymbol{b} as

$$
\begin{equation*}
\mathrm{b}(1)=\mathrm{b}(1)+\mathrm{gNa} ; \quad \mathrm{b}(\mathrm{~K}+1)=\mathrm{b}(\mathrm{~K}+1)+\mathrm{gNb} ; \tag{78}
\end{equation*}
$$

- To set the Dirichlet data we need to remove the testing functions associated to the boundary nodes

$$
\begin{equation*}
A(1,:)=0 ; \quad A(K+1,:)=0 ; \quad b(1)=0 ; \quad b(K+1)=0 ; \tag{79}
\end{equation*}
$$

add value 1 to the diagonal of \boldsymbol{A}

$$
\begin{equation*}
A(1,1)=1 ; \quad A(K+1, K+1)=1 ; \tag{80}
\end{equation*}
$$

and the Dirichlet boundary data $\mathrm{gDa}=g^{D}(a), \mathrm{gDb}=g^{D}(b)$ to vector \boldsymbol{b}

$$
\begin{equation*}
\mathrm{b}(1)=\mathrm{gDa} ; \quad \mathrm{b}(\mathrm{~K}+1)=\mathrm{gDb} ; \tag{81}
\end{equation*}
$$

1D FINITE ELEMENT METHOD

On Matlab Programming - Summary of Steps

1. generate mesh on interval $[a, b]$ and define coord and etopol
2. generate integration points on the reference element
3. define linear shape functions and their derivatives
4. initialization of \boldsymbol{A} and \boldsymbol{b}, i.e., set elements of \boldsymbol{A} and \boldsymbol{b} to zero
5. assemble \boldsymbol{A} and \boldsymbol{b} by looping over the elements
5.1 find global indeces of the nodes of element e_{k}
5.2 find coordinates of the end points of element e_{k}
5.3 define integration points on element e_{k}
5.4 compute Jacobian of mapping F and its inverse on element k
5.5 compute local matrices and local vector on element e_{k}
5.6 add local matrices and local vector to the global ones (\boldsymbol{A} and \boldsymbol{b})
6. enforce boundary conditions to the global matrix and vector
7. solve the matrix equation

1D FINITE ELEMENT METHOD

Matlab Exercises

Figure: Solutions for Neumann and Dirichlet problems (exercises 2. and 3.).

