
Department of Radio
Science and Engineering

Aalto University

Introduction to Finite Element Method

Pasi Yl ä-Oijala

April 24 and 28, 2014

INTRODUCTION
General Issues and Content

◮ Short introduction to finite element method (FEM).
◮ Based on course Numerical Methods in Electromagnetics, given at

Department of Radio Science and Engineering, Aalto University.
◮ This course consists of lectures and (Matlab) exercises.
◮ Contact and questions: pasi.yla-oijala(at)aalto.fi.

Content:

1. Introduction

2. General recipe of FEM

3. 1D scalar FEM

4. 2D (3D) scalar FEM

5. Example – Capacitance computation in electrostatics

Department of Radio
Science and Engineering

Aalto University

INTRODUCTION
CSE & FEM

◮ During the last few decades the importance of numerical
simulations has significantly increased. Reasons for this are the
ever increasing capacity of computers and the development of more
and more sophisticated numerical methods and algorithms.

◮ The outcome of this is the recent arising of the Computational
Science and Engineering, not only as a secondary “cost saving
field”, but as an independent scientific domain.

◮ Finite element method (FEM) is one of the most versatile and
widely used numerical techniques for finding approximate solutions
of boundary value problems arising from partial differential
equation-based mathematical modeling of physical phenomena.

◮ FEM is applied e.g., in structural analysis, fluid dynamics, solid
mechanics, acoustics, and electromagnetics.

Department of Radio
Science and Engineering

Aalto University

INTRODUCTION
Applications and Numerical Methods in Electromagnetics

Department of Radio
Science and Engineering

Aalto University

INTRODUCTION
General Idea of FEM

The idea in FEM is to convert an infinite dimensional continuous linear
operator equation into a finite dimensional discrete matrix equation

D[u] = v =⇒ Ax = b. (1)

Generally, FEM can be understood to consist of the following steps:

1. Geometrical modeling (solid modeling, mesh generation).
2. Physical and mathematical modeling (PDE, boundary conditions,

material parameters, weak formulation, function spaces).
3. Numerical modeling (discrete FE spaces).
4. Implementation (computer programming).
5. Computations and simulations (matrix assembly, solution of linear

system).
6. Post-processing (visualization, parameter computation).

Department of Radio
Science and Engineering

Aalto University

INTRODUCTION
From Design Through Mathematical Formulation and Programm ing to Simulations

Design : Mathematical Formulation :
For a given J ∈ HDiv(Ω) find E ∈ HCurl(Ω) satisfying

〈

∇ × w ,
1

µr
∇ × E

〉

− k2
0 〈w , εrE〉 = iωµ0 〈w , J〉 , in Ω,

for all w ∈ HCurl(Ω) and γtE = 0 on Γ.

Solution : C++ Code :
const UINT N = A.get M();
const UINT nele = mesh->get nele();
sparse mat<bool> E(nele,N);
for (UINT ele = 0; ele != nele; ++ele)
E.register element(ele, 3);
E.register complete();
for (UINT ele = 0; ele != nele; ++ele)
{ const auto &row = rwgs(ele);
for (unsigned int j = 0; j != row.get M();
++j)
E.push in(ele, abs(row(j)) - 1); }
E.finalize();
const sparse mat<bool> *const ET2 =
E.transpose();
const sparse mat<bool> &ET = *ET2;
dynamic vec<bool> flags(N);Department of Radio

Science and Engineering

Aalto University

INTRODUCTION
Notations

◮ Points in Rn, n = 1, 2, 3, are denoted by r = x, r = (x, y), and r = (x, y, z).
◮ Unit vectors in rectangular coordinate system are ex, ey and ez.
◮ Vectors are denoted by boldface and vector fields by capitals

F(r) = Fx(r)ex + Fy(r)ey + Fz(r)ez. (2)

◮ Gradient of a scalar function is

∇f (r) =
∂f (r)
∂x

ex +
∂f (r)
∂y

ey +
∂f (r)
∂z

ez. (3)

◮ Divergence of a vector function is

∇ · F(r) =
∂Fx(r)
∂x

+
∂Fy(r)
∂y

+
∂Fz(r)
∂z

. (4)

◮ Curl of a vector function is

∇× F =
(

∂Fz

∂y
−

∂Fy

∂z

)

ex +
(

∂Fx

∂z
−

∂Fz

∂x

)

ey +
(

∂Fy

∂x
−

∂Fx

∂y

)

ez. (5)

◮ Laplacian of a scalar function is

∆f (r) = ∇ · ∇f (r) =
∂2f (r)
∂x2

+
∂2f (r)
∂y2

+
∂2f (r)
∂z2

(= ∇2f (r)). (6)

Department of Radio
Science and Engineering

Aalto University

INTRODUCTION
Gauss Formulas and Inner Product

◮ Let Ω be a simply connect closed domain in Rn with sufficient
smooth boundary Γ, and unit normal vector n. Then

∫

Ω

∇u dΩ =

∫

Γ

n u dΓ (7)
∫

Ω

∇ · F dΩ =

∫

Γ

n · F dΓ (8)
∫

Ω

∇× F dΩ =

∫

Γ

n× F dΓ, (9)

◮ L2(Ω) symmetric (inner) product (without complex conjugate!)

〈u , v〉 =
∫

Ω

u(r) v(r) dΩ or 〈u , v〉 =
∫

Ω

u(r) · v(r) dΩ. (10)

◮ In addition, denote

〈u , v〉Γ =

∫

Γ

u(r) v(r) dΓ or 〈u , v〉Γ =

∫

Γ

u(r) · v(r) dΓ. (11)

Department of Radio
Science and Engineering

Aalto University

GENERAL RECIPE
Boundary Value Problem

◮ Let Ω be an open bounded domain in Rn with sufficiently smooth
boundary Γ.

◮ Consider the following partial differential equation

−∇ ·
(

α∇u(r)
)

+ βu(r) = f (r), r ∈ Ω. (12)

◮ Divide Γ into two parts Γ = ΓD ∪ ΓN so that ΓD ∩ ΓN = ∅.
◮ Consider two types of boundary conditions:

u|ΓD = gD, Dirichlet (“essential”) (13)

α
∂u
∂n

∣

∣

∣

∣

ΓN

= gN , Neumann(“natural”) (14)

Here u is a unknown function, α and β are given coefficients, f , gD

and gN are known functions.
◮ Solutions of this boundary value problem (BVP) are called strong

solutions – “equality holds at every point”.
◮ In FEM we, however, consider: weak solutions – “equality holds in

weighted average sense”.

Department of Radio
Science and Engineering

Aalto University

GENERAL RECIPE
Weak Formulation

◮ Define Sobolev spaces

H0(Ω) :=
{

u ∈ L2(Ω)
}

, (15)

H1(Ω) :=
{

u ∈ L2(Ω) and∇u ∈ (L2(Ω))3
}

, (16)

the Dirichlet and Neumann trace spaces

γDu := u|ΓD : H1(Ω) 7→ H1/2(ΓD), (17)

γNu := ∂u/∂n|ΓN : H1(Ω) 7→ H−1/2(ΓN), (18)

and the dual space of H1(Ω), (H1(Ω))′ = H−1(Ω).
◮ Weak formulation of BVP (12) - (14) reads:

For given f ∈ (H1(Ω))′, gD ∈ H1/2(Γ) and gN ∈ H−1/2(Γ), find such
u ∈ H1(Ω), γDu = gD, that

〈∇w , α∇u〉+ 〈w , βu〉 = −
〈

w , gN
〉

ΓN
+ 〈w , f 〉 , (19)

holds for all w ∈ H1(Ω), γDw = 0.

Department of Radio
Science and Engineering

Aalto University

GENERAL RECIPE
Finite Element Spaces

◮ The next step in FEM is to find a suitable set of finite elements (FE).
◮ Generally, FE is a triple

(T,PT ,ΣT), (20)

where
◮ T is a geometric domain (“an element”)
◮ PT is a space of functions (polynomials) on T (“an approximation”)
◮ ΣT is a set of linear functionals on PT (degrees of freedom, dof).

◮ An union of all (T,PT ,ΣT) is called a (global) FE space.
◮ Important properties of a FE (space):

◮ FE (T ,PT ,ΣT) is said to be unisolvent if specifying a value for each dof
in ΣT uniquely determines a function in PT .

◮ FE (T ,PT ,ΣT) is said to be H conforming if the corresponding FE
space is a subspace of a function space H.

◮ In the following we shall use the following important result: “The FE
space of piecewise continuous polynomials is H1 conforming and
unisolvent”.

Department of Radio
Science and Engineering

Aalto University

GENERAL RECIPE
Discrete Problem – Basis Functions

◮ Assume that we have a discrete FE space Uh that is H1 conforming
and unisolvent.

◮ Discrete problem can now be formulated as: Find such uh ∈ Uh,
uh|γD = gD, that

〈

∇wh , α∇uh
〉

+
〈

wh , βuh
〉

= −
〈

wh , gN
〉

ΓN
+
〈

wh , f
〉

, (21)

holds for all wh ∈ Uh, wh|γD = 0 .
◮ In practice, u is approximated with a linear combination of basis

functions u1, . . . , uN ∈ Uh

u(r) ≈
N
∑

n=1

cn un(r) = uh(r). (22)

◮ Then choose a set of testing functions w1, . . . ,wM ∈ Uh. Usually we
have wm = um for all m (excluding the testing functions on ΓD) and
M = N.

Department of Radio
Science and Engineering

Aalto University

GENERAL RECIPE
Discrete Problem – Matrix Equation

◮ This gives a set of linear equations, i.e., a matrix equation

A x = b, (23)

where A is N × N system matrix, x = [c1, . . . , cN]
T is the coefficient

vector to be found, and b is N × 1 source vector.
◮ Elements of A and b are given by

Amn = 〈∇um , α∇un〉+ 〈um , βun〉 ,

=

∫

Ωmn

α(r)∇um(r) · ∇un(r) dΩ+

∫

Ωmn

β(r)um(r)∇un(r) dΩ,(24)

bm = 〈um , f 〉 − < um , gN >ΓN

=

∫

spt(um)

um(r)f (r) dΩ−
∫

spt(um)∩ΓN

um(r)gN(r) dΓ, (25)

for all n,m = 1, . . . ,N. Here Ωmn = spt(um)∩spt(un),
◮ Matrix A is sparse (most elements are 0) and symmetric.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Boundary Value Problem

◮ Next we consider more details of FEM implementations in 1D.
◮ Consider the following second order differential equation in 1D

−
d
dx

(

α
du(x)

dx

)

+ βu(x) = f (x), x ∈ [a, b], (26)

where u is the unknown function to be found, α and β are known
coefficients and f is a given function.

◮ Boundary conditions at x = a and x = b are either

u(x) = gD(x), Dirichlet, (27)

or

α
du
dx

(x) = gN(x), Neumann. (28)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Weak Formulation

◮ With Dirichlet boundary condition the weak formulation reads

〈 d
dx

w , α
du
dx

〉

+ 〈w , βu〉 = 〈w , f 〉 , u(a) = gD(a), u(b) = gD(b).

(29)
Here the testing function w vanishes at the end points of the interval
[a, b], i.e., w(a) = 0 and w(b) = 0.

◮ With Neumann boundary condition the weak formulation becomes

〈 d
dx

w , α
du
dx

〉

+ 〈w , βu〉 = 〈w , f 〉 − w(b) gN(b) + w(a) gN(a). (30)

◮ In the following, the weak formulation is first discretized using
testing functions that do not vanish at the end points, and the
boundary conditions are later enforced to the discretized matrix
equation.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Mesh and Finite Element Space

a bxk xk+1

Figure: 1D mesh.

◮ Divide interval [a, b] into small line segments, called elements,
ek = [xk, xk+1], k = 1, 2, . . . ,K.

◮ Approximate unknown function u with piece-wise continuous first
order polynomials.

◮ FE (T,PT ,ΣT) is then given by

T = ek, PT = P(1)(x), ΣT = [uh(xk), uh(xk+1)] (31)

◮ Geometric element is interval ek.
◮ Approximating functions P(1)(x) are first order polynomials of x on ek.
◮ dof are the values of the approximation uh at the end points of ek.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Basis Functions

◮ Function u is approximated as a linear combination of piece-wise
linear continuous basis functions un

u(r) ≈ uh(r) =
NN
∑

n=1

cnun(r). (32)

Here NN is the number of the nodes of the mesh (points xk).
◮ Piece-wise linear functions are defined as

un(r) =

1 if r = xn,
0 if r = xm, m 6= n,

linear otherwise.
(33)

xn xn+1xn−1

Figure: A linear basis function in 1D.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Basis Functions

xk xk+1 xk+2 ekek

u+
k

u−
k

Figure: Linear approximation of a 1D function and two linear shape functions.

◮ This approximation is unisolvent, the value of uh at each node xn

uniquely defines the value of the approximation uh.
◮ It is conforming in H1([a, b]).
◮ It gives linear interpolation on each element ek.
◮ The total number of dof is the number of nodes (division points).
◮ Basis functions are defined on two adjacent elements, excluding

the basis functions associated to the end points x = a and x = b.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Shape Functions

◮ Define two linear functions on an interval ek

u+
k (x) =

x− xk−1

Lk−1
, u−

k (x) =
xk+1 − x

Lk
, (34)

and Lk = xk+1 − xk is the length of the interval ek.
◮ These functions are restrictions of the the linear basis functions on

ek, i.e., un|ek , and are sometimes called linear shape functions.
◮ Piece-wise linear functions for n = 2, . . . ,N − 1 are now given by

un(x) =

u+
n (x), if x ∈ en−1 = [xn−1, xn],

u−
n (x), if x ∈ en = [xn, xn+1],

0 otherwise,

(35)

and for n = 1 and n = N = K + 1 they are

u1(x) = u−
1 (x),

uN(x) = u+
N (x),

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Testing Functions and Matrix Equation

◮ Using the same piece-wise linear functions as the testing functions
(Galerkin’s method), i.e., wm = um, for all m, gives a matrix equation

A x = b. (36)
Elements of A and b are:

1. Dirichlet boundary condition:

Amn =
〈dum

dx
, α

dun

dx

〉

+ 〈um , βun〉 , (37)

bm = 〈um , f 〉 . (38)

2. Neumann boundary condition:

Amn =
〈dum

dx
, α

dun

dx

〉

+ 〈um , βun〉 , (39)

bm = 〈um , f 〉 − um(a) gN(a) + um(b) gN(b). (40)

◮ Dirichlet: Testing functions should vanish at the end points and
boundary data has to be enforced separately.

◮ Neumann: Boundary data appears in the weak formulation.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Matrix Elements

◮ Elements of matrix A and vector b (without the boundary conditions)
could be evaluated with the following simple looking algorithm:

Zero matrix A and vector b.
for m = 1, . . . ,N do

b(m) =

∫

spt(um)

um(x) f (x) dx

for n = 1, . . . ,N do

A(m, n) =
∫

spt(um)∩spt(un)

(

α(x)
dum(x)

dx
dun(x)

dx
+ β(x)um(x)un(x)

)

dx

end for
end for

◮ This algorithm is very inefficient because by looping over the basis
and testing functions the integrals will be computed several times.

◮ Can we do this more efficiently?

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Local matrices

◮ Define two 2× 2 “local matrices” and a 2× 1 “local vector” of
element ek

alok1(i, j) =

∫

ek

Nk
i (x)Nk

j (x) dx, (41)

alok2(i, j) =

∫

ek

dNk
i (x)
dx

dNk
j (x)

dx
dx, (42)

blok1(i) =

∫

ek

Nk
i (x) f (x) dx, (43)

i, j = 1, 2, and Nk
i = un|ek , i = 1, 2, are linear shape functions of

element ek, i.e., the “u+” and “u−” functions defined before.
◮ Assume that coefficients α and β have constant values αk and βk in

element ek, and that A and b are initialized with zeros. Then A and
vector b can be assembled using the following algorithms:

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
System Matrix Assembly

for k = 1, . . . ,K do
% Compute local matrices alok1 and alok2 for element K
for i = 1, . . . , 2 do

for j = 1, . . . , 2 do
alok1(i, j)←

∫

ek
Nk

i (x)Nk
j (x) dx

alok2(i, j)←
∫

ek

dNk
i (x)
dx

dNk
j (x)

dx dx
end for

end for
% Add local matrices to the global one
for i = 1, . . . , 2 do

for j = 1, . . . , 2 do
A(nk

i , nk
j)← A(nk

i , nk
j) + αkalok2(i, j) + βkalok1(i, j)

end for
end for

end for
◮ nk

i , nk
j and i, j are “global” and “local” indeces of the nodes of ek.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Source Vector Assembly

for k = 1, . . . ,K do
Compute local vector blok1
for i = 1, . . . , 2 do
blok1(i)←

∫

ek
Nk

i (x) f (x) dx
end for
Add local vector to the global one
for i = 1, . . . , 2 do

b(nk
i)← b(nk

i) + blok1(i)
end for

end for
◮ The benefit of these algorithms compared to the previous one is

that by looping over the elements of the mesh (once), an integral
over each element is computed only once.

◮ The drawback is that we would need additional bookkeeping of the
global and local indeces. This, however, is rather trivial, as will be
seen later.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Enforcing Boundary Conditions

◮ Neumann boundary data is given by

< um , gN >= um(b)g
N(b)− um(a)g

N(a). (44)

◮ Because testing function get value one at points x = a and x = b

< um , gN >= gN(b)− gN(a). (45)

◮ Neumann boundary data (gN) is added to vector b as

b(bn) = b(bn)± gN(xbn), (46)

where bn is an index of a boundary node xbn.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Enforcing Boundary Conditions

◮ Dirichlet boundary data is given by

uh(a) = gD(a) and uh(b) = gD(b). (47)

◮ To set the Dirichlet data we need to remove the testing functions
associated to the boundary nodes bn (if we have used testing
functions defined at the boundary nodes). This agrees to setting
rows bn of matrix A and elements bn of b to zero.

◮ Next value one is set to the diagonal of matrix A and wanted
boundary data is set to vector b

bn

bn

0 . . . 0 1 0 . . . 0

cbn

=

gD(xbn)

(48)

◮ The problem is that this leads to a non-symmetric matrix.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ Consider next numerical evaluation of the matrix and vector
elements

alok1(i, j) =

∫

ek

Nk
i (x)Nk

j (x) dx, (49)

alok2(i, j) =

∫

ek

dNk
i (x)
dx

dNk
j (x)

dx
dx, (50)

blok1(i) =

∫

ek

Nk
i (x) f (x) dx. (51)

◮ 1D these elements can be in most cases computed analytically.
◮ Next we, however, introduce their numerical evaluation.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ Define a reference element ê = [0, 1] and a linear mapping from ê to
ek = [ak, bk]

x = Fk(ξ) =

2
∑

i=1

N̂i(ξ)p
k
i = akN̂1(ξ) + bkN̂2(ξ)

= ak + (bk − ak)ξ = ak + Lkξ, (52)

where pk
i are the end points of ek (pk

1 = ak, pk
2 = bk) and N̂k

i are linear
shape functions on ê defined as

N̂1(ξ) = 1− ξ, (the “minus” function), (53)

N̂2(ξ) = ξ, (the “plus” function). (54)

0 1 ak bk

Fk

ξ x

Figure: Mapping Fk from the reference element ê to an element ek.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ Assume that we have a numerical quadrature rule on the reference
element

∫

ê

g(ξ) dξ =

1
∫

0

g(ξ) dξ ≈
P

∑

p=1

ωpg(ξp) (55)

where ξp and ωp are the integration points and weights on ê.
◮ Now an integral on ek can be computed numerically using an

integral quadrature defined on the reference element ê
∫

ek

f (x) dx =

∫

ê

f (Fk(ξ)) | det(JFk)| dξ ≈ | det(JFk)|
P

∑

p=1

ωp f (Fk(ξp)) (56)

where JFk is the Jacobian of Fk

JFk =
∂Fk

∂ξ
= bk − ak = Lk. (57)

◮ In other words, for a linear mapping | det(JFk)| is the length of ek.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ Matrix elements including products of linear shape functions read
∫

ek

Nk
i (x)Nk

j dx =

∫

ê

Nk
i (Fk(ξ))Nk

j (Fk(ξ)) | det(JFk)| dξ. (58)

◮ Define
Nk

i (x) := N̂i(F
−1
k (x)) = N̂i(ξ). (59)

◮ Then integral (58) can be evaluated using integration points and
weights, and the shape functions defined on the reference element
ê

∫

ê

Nk
i (Fk(ξ))Nk

j (Fk(ξ)) | det(JFk)| dξ = | det(JFk)|

1
∫

0

N̂i(ξ) N̂j(ξ) dξ

≈ Lk

P
∑

p=1

ωpN̂i(ξp) N̂j(ξp)). (60)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ Using the chain rule, derivative of a nodal shape function is

dN̂i(ξ)

dξ
=

dNk
i (x)
dx

dFk

dξ
i.e.,

dNk
i (x)
dx

=
(dFk

dξ

)−1 dN̂i(ξ)

dξ
. (61)

◮ Since
dFk

dξ
= bk − ak = Lk,

(

dFk

dξ

)−1

=
1
Lk

, (62)

we have
dN̂i

dξ
= Lk

dNk
i

dx
and

dNk
i

dx
=

1
Lk

dN̂i

dξ
(63)

◮ Further, since | det(JFk)| = Lk, dN̂1/dξ = −1 and dN̂2/dξ = 1, we get
∫

ek

dNk
i (x)
dx

dNk
j (x)

dx
dx = | det(JFk)|

∫

ê

(dFk

dξ

)−1 dN̂i(ξ)

dξ

(dFk

dξ

)−1 dN̂j(ξ)

dξ
dξ

= Lk

∫

ê

(1
Lk

dN̂i(ξ)

dξ

)(1
Lk

dN̂j(ξ)

dξ

)

dξ =

{ 1
Lk

if i = j,

−1
Lk

if i 6= j.
(64)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Computing the Matrix Elements

◮ To summarize, the elements of the local matrices and vector are

alok1(i, j) ≈ Lk

P
∑

p=1

ωpN̂i(ξp) N̂j(ξp)), (65)

alok2(i, j) =

1
Lk

if i = j,

−1
Lk

if i 6= j,
(66)

blok1(i) ≈ Lk

P
∑

p=1

ωpN̂i(ξp) f (Fk(ξp)). (67)

◮ The reason for reducing integrals to the reference element is that
we need to generate the integration points and weights only once.

◮ Note that the formula for alok2 is valid only for linear functions.

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Mesh Data Structures

◮ Define two mesh data structures, coordinates of the nodes of the
elements

coord = [x1, x2, . . . , xK+1] , (68)

and the element topology, the indeces of the nodes of the elements,

etopol =

[

n1,1, n1,2, . . . , n1,K

n2,1, n2,2, . . . , n2,K

]

. (69)

◮ Coordinates of the nodes of element k:

coord(etopol(1, k)) and coord(etopol(2, k)). (70)

◮ Global node indeces nk
i and nk

j :

nk
i = etopol(i, k) and nk

j = etopol(j, k). (71)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
On Matlab Programming – Mesh and Shape Functions

◮ “Mesh” of interval [a, b] including K elements and K + 1 nodes:

x = linspace(a,b,K+ 1); (72)

◮ coord and etopol:

coord = x; etopol = [1 : K,2 : K+ 1]; (73)

◮ Integration points and weight on the reference element [0, 1] (P is
the number of points):

[xi,w] = gausslegendre(P); (74)

◮ Linear shape functions at the integration points ξ:

N1 = 1− xi; N2 = xi; (75)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
On Matlab Programming – Numerical Integration

◮ Integration points on an element ek = [ak, bk]:

xk = ak+ xi ∗ (bk− ak); (76)

◮ Integral of a function f times a shape function N over ek:
∫

ek

f (x)N(x) dx = detJk ∗ (fun(xk). ∗ N) ∗ w; (77)

Here N = N(ξ) (values of a shape function at points ξ on the
reference element) and fun(xk) = @(xk) f(xk) (values of
function f at points xk on the element ek) should be row vectors and
w (weights on the reference element) should be a column vector,
and detJk is the Jacobian determinant of mapping Fk.

◮ A function handle can be used to compute f (x) = x2 at n points x on
interval [a, b] e.g., as

fun = @(x)x.2;
x = linspace(a,b,n);
f = fun(x);

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
On Matlab Programming – Boundary Conditions

◮ Assume that the global indeces of the end points of an element
division of interval [a, b] are 1 and K + 1.

◮ Assume also that matrix A and vector b have been assembled
using testing functions that do not vanish at the boundary nodes.

◮ Neumann boundary data gNa= gN(a), gNb= gN(b) is added to
source vector b as

b(1) = b(1) + gNa; b(K+ 1) = b(K+ 1) + gNb; (78)

◮ To set the Dirichlet data we need to remove the testing functions
associated to the boundary nodes

A(1, :) = 0; A(K+ 1, :) = 0; b(1) = 0; b(K+ 1) = 0; (79)

add value 1 to the diagonal of A

A(1,1) = 1; A(K+ 1,K+ 1) = 1; (80)

and the Dirichlet boundary data gDa= gD(a), gDb= gD(b) to vector b

b(1) = gDa; b(K+ 1) = gDb; (81)

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
On Matlab Programming – Summary of Steps

1. generate mesh on interval [a,b] and define coord and etopol

2. generate integration points on the reference element

3. define linear shape functions and their derivatives

4. initialization of A and b, i.e., set elements of A and b to zero

5. assemble A and b by looping over the elements

5.1 find global indeces of the nodes of element ek

5.2 find coordinates of the end points of element ek

5.3 define integration points on element ek

5.4 compute Jacobian of mapping F and its inverse on element k
5.5 compute local matrices and local vector on element ek

5.6 add local matrices and local vector to the global ones (A and b)

6. enforce boundary conditions to the global matrix and vector

7. solve the matrix equation

Department of Radio
Science and Engineering

Aalto University

1D FINITE ELEMENT METHOD
Matlab Exercises

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Neumann problem

analytical

numerical

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2
Dirichlet problem

analytical
numerical

Figure: Solutions for Neumann and Dirichlet problems (exercises 2. and 3.).

Department of Radio
Science and Engineering

Aalto University

