Department of Mathematics and Statistics, University of Helsinki

 Numerical methods and the C language, Winter and Spring 2014Workshop 12
Mon 14.4. at 16-18 B322

1. By using the program odeint included in e.g. myod1.c on the www-page, solve the secondorder constant coefficient differential equation $y^{\prime \prime}+a y^{\prime}+b y=g(x)$ initial value problem $y(0)=0, y^{\prime}(0)=1$ when $a=2, b=3, g(x)=\exp (-x)$ and compare to the exact solution $0.5 * r+r *\left(c_{1} * \cos \left(x / c_{2}\right)+\left(c_{2}\right) * \sin \left(x / c_{2}\right)\right), r=\exp (-x), c_{1}=-0.5, c_{2}=\operatorname{pow}(2.0,-0.5)$.
Hint: The situation can be reduced to solving the system of equations

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d x}=y_{2}(x) \\
\frac{d y_{2}}{d x}=g(x)-a y_{2}(x)-b y_{1}(x)
\end{array}\right.
$$

2. The so called Lorentz system of differential equations occur in e.g.weather forecasting:

$$
\begin{gathered}
\frac{d y_{1}}{d x}=s\left(y_{2}(x)-y_{1}(x)\right) \\
\frac{d y_{2}}{d x}=r y_{1}(x)-y_{2}(x)-y_{1}(x) y_{3}(x) \\
\frac{d y_{3}}{d x}=y_{1}(x) y_{2}(x)-b y_{3}(x)
\end{gathered}
$$

By using rkdumb or odeint, solve this in the interval $[0,8]$ when $s=10, r=128, b=8$ and the initial values are $7.7,-15.6,90.4$.
3. Modify the program myod1.cpp as to draw pictures of the solution function of the following initial value problem. The hypergeometric function $F(a, b ; c ; x)$ satisfies

$$
\begin{aligned}
\frac{d F(a, b ; c ; x)}{d x} & =\frac{a b}{c} F(a+1, b+1 ; c+1 ; x) \text { and } \\
F(a, b ; c ; 0) & =1
\end{aligned}
$$

For $x \in(0,1)$ and $a, b \in(0,1)$

$$
\begin{aligned}
\frac{d F(a-1, b ; c ; x)}{d x} & =\frac{(a-1)}{x}[F(a, b ; c ; x)-F(a-1, b ; c ; x)] \\
\frac{d F(a, b ; c ; x)}{d x} & =\frac{(c-a) F(a-1, b ; c ; x)+(a-c+b x) F(a, b ; c ; x)}{x(1-x)} .
\end{aligned}
$$

Hence the IVP

$$
\begin{aligned}
\frac{d y 1}{d x} & =\frac{a-1}{x}[y 2(x)-y 1(x)] \\
\frac{d y 2}{d x} & =\frac{(c-a) y 1(x)+(a-c+b x) y 2(x)}{x(1-x)}, \\
y 1(x 1) & =F(a-1, b ; c ; x 1) \\
y 2(x 1) & =F(a, b ; c ; x 1)
\end{aligned}
$$

has solution $y 1=F(a-1, b ; c ; x), y 2=F(a, b ; c ; x)$. Set concrete values such as $x 1=$ $0.1, \mathrm{a}=1.2, \mathrm{~b}=2.3, \mathrm{c}=3.5$ and compute the numerical and the exact solution on [0.1, 0.9]. Also compute the difference between these.
4. Use the program odeint.c to compute the integral

$$
\int_{0}^{x} 10 \sin \left(2^{n} \pi t\right) d t, n=1,2, \ldots, x \in(0,1)
$$

and print the difference to the exact value.
5. We consider for $h>0$ a quadrature formula of the form

$$
\int_{0}^{3 h} f(x) d x=w_{1} f(0)+w_{2} f(2 h)+w_{3} f(3 h)
$$

where the weights $w_{j}, j=1,2,3$, are chosen so that this holds as equality for each of the three functions $1, x, x^{2}$.
(a) Find the coefficients $w_{j}, j=1,2,3$.
(b) Show that the formula also holds as equality for $f(x)=a x^{2}+b x+c$.
(c) What is the error if $h=1, f(x)=1+x+x^{2}+x^{3}$?

