Department of Mathematics and Statistics, University of Helsinki

Numerical methods and the C language, Winter and Spring 2014
Workshop 11
Mon 7.4. at 16-18 B322
FILE: h11.tex printed on February 17, 2014 at 19.33

1. A bounded optimization problem can sometimes be handled by change of variables in the following way. Assume that the task is to minimize the Rosenbrock function

$$
f(x, y)=100(x * x-y)^{2}+(1-x)^{2}
$$

with constraints $x \geq-2$ and $y \geq 2$. We define new variables u and v such that $x=$ $-2+u^{2}, y=2+v^{2}$, when the new target function gets the form

$$
\mathrm{g}(\mathrm{u}, v)=100\left(\left(-2+\mathrm{u}^{2}\right)^{2}-2-v^{2}\right)^{2}+\left(1+2-u^{2}\right)^{2} .
$$

This is then minimized without constraints, and from its solution u_{0}, v_{0} we obtain the solution to the original problem, $x_{0}=-2+\left(u_{0}\right)^{2}, y_{0}=2+\left(v_{0}\right)^{2}$.
2. Minimize the Rosenbrock function with constraints $-2 \leq x \leq 0.8$ using for instance the substitution $x=-2+2.8 *(\sin (u))^{2}$.
3. Solve the Dirichlet problem in the situation of the picture and with boundary values and indexing as in the picture when the grid point distance is $h=1$.

4. a) Solve the Dirichlet problem in the situation of the picture, with boundary-values as in the picture, and obeying the given numbering of variables. The side length of a square is 1 .

b) As a), but in the situation of the picture below.

5. For $n=1,2, \ldots$ let $S_{n}=\sum_{k=1}^{n} \sin (k \theta) / k$.
(a) Show by experiments that $S_{n} \rightarrow(\pi-\theta) / 2$ on $[0, \pi]$ when $n \rightarrow \infty$.
(b) It was conjectured by L. Féjer in 1910 that $S_{n}>0$ for all $\theta \in(0, \pi)$. Verify this statement experimentally.
(c) Study also whether

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\sin (\mathrm{k} \theta)}{\mathrm{k} \sin (\theta / 2)}<0
$$

