Department of Mathematics and Statistics, University of Helsinki

Numerical methods and the C language, Winter and Spring 2014
Workshop 10
Mon 31.3. at 16-18 B322

1. Ramanujan has proposed that

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)\left(1+r^{2} x^{2}\right)\left(1+r^{4} x^{2}\right)}=\frac{\pi\left(1+r+r^{2}\right)}{2\left(1+r^{2}\right)(1+r)^{2}}
$$

By using the program xqromo.cpp or QAGI-integration in GSL show that this formula holds for $r=0,1, \ldots, 10$ and compute the size of the error.
2. Solve the following by using the program mysix4.cpp (or in GSL simplex.c):
a) Maximize $x_{1}+2 x_{2}+3 x_{3}-x_{4}$ subject to $x_{i} \geq 0$ and

$$
\begin{gathered}
x_{1}+2 x_{2}+3 x_{3} \leq 15 \\
2 x_{1}+x_{2}+5 x_{3} \leq 20 \\
x_{1}+2 x_{2}+x_{3}+x_{4} \leq 10
\end{gathered}
$$

b) Maximize $2 x_{1}-4 x_{2}+5 x_{3}-6 x_{4}$ subject to $x_{i} \geq 0$ and

$$
\begin{gathered}
x_{1}+4 x_{2}-2 x_{3}+8 x_{4} \leq 2 \\
-x_{1}+2 x_{2}+3 x_{3}+4 x_{4} \leq 1
\end{gathered}
$$

3. Minimize

$$
5 x^{2}+\sin (5 x)-2 \cos \left(x^{2}\right)
$$

by using the golden section and Brent's method (NR::brent, NR::golden). Compare their rate of convergence, i.e. print or plot the x -values and function values after each iteration step.

Hint: Modify NR::brent and NR::golden to obtain the x -values after each step of the algorithm.
4. The Bessel function J_{0} has the following approximate formula

$$
\pi \mathrm{J}_{0}(z)=\left(\frac{2 \pi}{z}\right)^{1 / 2}\left\{\cos (z-\pi / 4)+\frac{1}{8 z} \sin (z-\pi / 4)+\mathrm{O}\left(1 / z^{2}\right)\right\}
$$

Explore experimentally the maximal error in this formula on the intervals $[10 * j, 10 *(j+$ $1)], j=1, \ldots, 30$. Recall that NR: : bessj0 gives the values of this Bessel function in NR.
5. A designer wants to find a spline curve that nicely describes a horizontal cross section of the famous Aalto vase. Help the designer in this task.

Hint: Use the program mysptrp2.cpp. See the picture below.

