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1. Make functions which generate random upper and lower triangular matrices and functions
which solve an upper and lower triangular system of equations, Ux = b and Lx = b

respectively. These solvers (usolve and lsolve) should take as an argument an upper or
respectively a lower triangular matrix as well a constant vector b. Solve the systems for
random matrices and for a randomly generated vector b.

2. For random numbers c0, . . . , c4 and fixed a, b ∈ R, a < b, compute the value of the
integral

I(a, b) =

∫b
a

4∑
j=0

cjx
j dx

(a) analytically, (b) numerically with the following trapezoidal formula. Let f(x) =∑4
j=0 cjx

j, n ∈ N, h = (b− a)/n and xk = a+ kh, k = 0, ..., n. Then

I(a, b) ≈ I(a, b, n) = h
n∑
k=1

[
1

2
f(xk−1) +

1

2
f(xk)

]
= h

n∑
k=0

f(xk) −
h

2
(f(x0) + f(xn)).

Print the results for n = 10, 100, . . . in the form

n I(a,b,n) |I(a,b,n) - I(a,b)| h*h

10 ... .... ...
100 ... .... ...

1000 ... .... ... .

3. Is the diagonal dominance of a square matrix preserved under the multiplication of two
such matrices? Is the inverse of a diagonally dominating matrix diagonally dominating? Is
the inverse of a tridiagonal matrix tridiagonal? Remember that a square n×nmatrix A =

(aij) is diagonally dominating if |ai,i| >
∑n
j=1,j 6=i|ai,j| for all i = 1, . . . , n and tridiagonal if

ai,j = 0 for |i− j| > 1.

4. At the youthful age of 103 years L. Vietoris (1891-2002) proved in 1994 the following
result (Notices of AMS Nov. 2002).

Theorem. Let a0 ≥ a1 ≥ ... ≥ an > 0 . If a2k ≤ 2k−1
2k a2k−1 for 1 ≤ k ≤ n

2 , then for all
t ∈ (0, π)

f1(t) ≡
n∑
k=1

ak sinkt > 0 , and f2(t) ≡
n∑
k=0

ak coskt > 0.

Verify these inequalities by generating random sequences of the coefficients satisfying
these constraints and by graphing the functions f1, f2 .
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5. For real n× n matrices A with eigenvalues λi show that the following results hold

tr(A) ≡
n∑
i=1

ai,i =

n∑
i=1

λi, det(A) =

n∏
i=1

λi.

Use the program myeigen.cpp (www-page/Chapter 11) to verify this experimentally. If
you are using GSL, it is sufficient to study symmetric matrices only.
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