Department of Mathematics and Statistics, University of Helsinki
 Numerical methods and the C language, Winter and Spring 2014

Workshop 2
Mon 27.1. at 16-18 B322

The helping program for the exercise 5 is at the course www-page.

1. Use the Monte Carlo method to compute the area between the curves $y=\sin (x)$ and $y=\cos (x)$ in the rectangle $\{(x, y): 0<x<2 \pi,-1<y<1\}$.
2. The LSQ solution of the linear system $A x=b$ where A is $m \times n, m>n$, is given according to Linear Algebra I by $x=\left(A^{\top} A\right)^{-1} A^{\top} b$ if $\left(A^{\top} A\right)^{-1}$ exists. Use this to fit the LSQ line $y=x_{1}+x_{2}$ t to the data $\{(2,1),(5,2),(7,3),(8,3)\}$.
3. Suppose that P and R are invertible $p \times p$ and $r \times r$ matrices, resp., and let

$$
A=\left(\begin{array}{ll}
P & 0 \\
0 & R
\end{array}\right), B=\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & R^{-1}
\end{array}\right)
$$

Show (e.g. by experiments) that $B=A^{-1}$.
4. (a) Make a function which takes a matrix as an argument and zeros all its entries below the diagonal. Write then a program that uses the function and ranmat to generates a random upper triangular matrix. Is it true that the product / inverse of an upper triangular matrix is again triangular?
(b) Make a function which takes a matrix $\mathcal{A}=\left(a_{i j}\right)$ as an argument and makes all $\mathfrak{a}_{\mathrm{i}, \mathrm{j}}=0$ for $|i-j|>1$. Write then a program using the function and ranmat to generate a random tridiagonal matrix. Is it true that the product / inverse of a tridiagonal matrix is again tridiagonal?
5. Let $f(x)=\int_{0}^{x} \sin ^{2}(t) d t$. Use the inverse function algorithm (see the www-page) to find a x such that $f(x)=5$.

