Department of Mathematics and Statistics, University of Helsinki Numerical methods and the C language, Winter and Spring 2014

Workshop 1

Mon 20.1. at 16-18 B322

```
FILE: h01.tex printed on December 31, 2013 at 13.55.
```

1. The formula to calculate a Celsius wind chill is:

$$
\mathrm{T}(w c)=0.045\left(5.27 \mathrm{~V}^{0.5}+10.45-0.28 \mathrm{~V}\right)(\mathrm{T}-33)+33
$$

Where: $\mathrm{T}(w c)=$ the wind chill, $\mathrm{V}=$ the wind speed in kilometers per hour and, $\mathrm{T}=$ the temperature in degrees Celsius. Write a program to compute the wind chill. Hint. Use the program hlp011.c(pp) on the www-page as a starting point.
2. Use the function in problem 1 to print the values of wind chill factor for the wind speeds $2 * j m / s, j=0,1,2,3,4$ and temperatures $10-j * 5, j=0,1,2,3,4$ in the following format

```
0
2 ....
4 ....
6 ....
8 ....
```

Hint. You may compare the results with a table the www-page h012.eps.
3. The file h013.dat on the www-page contains $21(x, y)$-pairs, one pair per line. Use this data to numerically approximate $d y / d x$ and write the approximations, $20\left(x, y^{\prime}(x)\right)$-pairs, on the screen or into a file.
4. The following table gives the euro exchange rate in US dollars at 6 consecutive Mondays. Use this information to fit a least-squares line $a x+b=y$ to the data (x_{i}, y_{i}) $, i=1, \ldots, 6$, where $x_{i}=i$ is the ordinal of the given date and y_{i} the corresponding exchange rate. Use vectors to store the data.

Table 1: Average exchange rates, 2001

Date	22.10.	29.10.	5.11.	12.11.	19.11.	26.11.
1 EUR in USD	0.8969	0.9005	0.8961	0.8919	0.8793	0.8818

Hint: Generally, for $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, the formulas of the coefficients a and b are

$$
a=\frac{\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}, \quad b=\frac{\sum y_{i}-a \sum x_{i}}{n},
$$

where $\bar{x}=\frac{1}{n} \sum x_{i}$ is the mean value.
5. Use the fixed point iteration to solve the equations (a) $\cos (x)=x$, (b) $e^{-x}=x$, (c) $1-\cosh (x)=x$.
6. The arithmetic-geometric mean $\operatorname{ag}(a, b)$ of two positive numbers $a>b>0$ is defined as $\operatorname{ag}(a, b)=\lim a_{n}$, where $a_{0}=a, b_{0}=b$, and

$$
a_{n+1}=\left(a_{n}+b_{n}\right) / 2, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad n=0,1,2, \ldots
$$

(a) Write a function, which takes two arguments (double), computes ag and returns the value (double).
(b) The hypergeometric function ${ }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{b} ; \mathrm{c} ; \mathrm{x})$ is defined as a sum of the series,

$$
\begin{aligned}
{ }_{2} F_{1}(a, b ; c ; x)=1+ & \frac{a b}{c} \frac{x}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^{2}}{2!}+\ldots \\
& +\frac{a(a+1) \ldots(a+j-1) b(b+1) \ldots(b+j-1)}{c(c+1) \ldots(c+j-1)} \frac{x^{j}}{j!}+\ldots
\end{aligned}
$$

This hypergeometric series converges for $|x|<1$. Gauss proved in 1799 that there is a connection between the hypergeometric function and the arithmetic-geometric mean,

$$
{ }_{2} \mathrm{~F}_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \mathrm{r}^{2}\right)=\frac{1}{\mathrm{ag}\left(1, \sqrt{1-\mathrm{r}^{2}}\right)}
$$

for $0<r<1$. Tabulate the difference of the two sides of this identity for $r=$ $0.05 \mathrm{k}, \mathrm{k}=1, \ldots, 19$. Use a library routine to calculate the values of the ${ }_{2} \mathrm{~F}_{1}$.

