Department of Mathematics and Statistics Measure and Integral Exercise 4 10-14.2.2014

- 1. Prove that the set $A = \{(x, y) \in \mathbb{R}^2 \colon x > 1 \text{ ja } 0 \leq yx^2 < 1\}$ is measurable.
- 2. Let $A \subset \mathbb{R}^n$ and $f \colon A \to \mathbb{R}$. Let $A_r = \{x \in A \colon f(x) > r\},$ when $r \in \mathbb{R}$. Prove: if $m_n^*(A_0) > 0$, there exists r > 0 such that $m_n^*(A_r) > 0.$
- 3. Let A_j , $j \in J$, be disjoint measurable subsets of \mathbb{R}^n such that $m_n(A_j) > 0$ for all $j \in J$. Prove that J is countable.
- 4. Prove that there exists disjoint sets $A \subset \mathbb{R}$ and $\mathbb{B} \subset \mathbb{R}$ such that $m^*(A \cup B) < m^*(A) + m^*(B).$
- 5. Let $A_k \subset [0,1], \ k = 1, 2, \dots$, be measurable. Suppose that

$$m(A_k) > \frac{2^k - 1}{2^k}.$$

for all $k \in \mathbb{N}$. Prove that the intersection $\bigcap_{k=1}^{\infty} A_k$ is non-empty.

6. Prove that the function $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q}; \\ x^2, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

is measurable.