1. True or false (and why)?
(a) If $A \subset \mathbb{R}^{n}$ is open, then its boundary ∂A is measurable.
(b) If $B \subset \mathbb{R}^{n}$ is an arbitrary set, then ∂B is measurable.
(c) If $A \subset \mathbb{R}$ is open and bounded, then $m_{1}(\partial A)=0$.
2. Let $E \subset \mathbb{R}^{n}$ be measurable and $A \subset \mathbb{R}^{n}$. Prove that

$$
m^{*}(A \cup E)+m^{*}(A \cap E)=m^{*}(A)+m^{*}(E) .
$$

3. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x \in[0,1], y \in[0,1] \backslash \mathbb{Q}\right\}$. Prove that A is measurable and compute $m_{2}(A)$.
4. Prove that $\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{Q}\right.$ or $\left.y \notin \mathbb{Q}\right\}$ is measurable.
5. Let

$$
\mathcal{F}_{\sigma}=\left\{\bigcup_{i=1}^{\infty} F_{i}: F_{i} \subset \mathbb{R}^{n} \text { is closed } \forall i\right\}
$$

and

$$
\mathcal{G}_{\delta}=\left\{\bigcap_{i=1}^{\infty} G_{i}: G_{i} \subset \mathbb{R}^{n} \text { is open } \forall i\right\} .
$$

Prove that $\mathcal{F}_{\sigma} \subset \operatorname{Bor} \mathbb{R}^{n}$ and $\mathcal{G}_{\delta} \subset \operatorname{Bor} \mathbb{R}^{n}$, where $\operatorname{Bor} \mathbb{R}^{n}$ is the family of all Borel subsets of \mathbb{R}^{n}.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuous and $A \subset \mathbb{R}^{n}$ is closed. Prove that $f A \in \mathcal{F}_{\sigma}$.

