1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(t_{1} x_{1}, t_{2} x_{2}\right)$, where $t_{1}, t_{2} \in \mathbb{R}$. Prove that

$$
m_{2}^{*}(f A)=\left|t_{1} t_{2}\right| m_{2}^{*}(A)
$$

for all $A \subset \mathbb{R}^{2}$.
2. We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz if there exists a constant $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in \mathbb{R}$. Prove: If $A \subset \mathbb{R}$ is of zero measure and $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz, then also the image $f A$ is measurable and $m(f A)=0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and $A \subset \mathbb{R}, m(A)=0$. Prove that $m(f A)=0$. [Consider first the case where A is bounded by using the mean value theorem.]
4. Let $A \subset[2,4]$. Prove that

$$
12 m_{1}^{*}(A) \leq m_{1}^{*}\left(\left\{x^{3}: x \in A\right\}\right) \leq 48 m_{1}^{*}(A) .
$$

Can the constant 12 (resp. 48) be replaced by a bigger (resp. smaller) constant?
5. Prove that a set $E \subset \mathbb{R}^{n}$ is measurable if and only if

$$
m^{*}(S \cup U)=m^{*}(S)+m^{*}(U)
$$

for all $S \subset E$ and $U \subset \mathbb{R}^{n} \backslash E$.
6. Prove that a set $E \subset \mathbb{R}^{n}$ is measurable if and only if

$$
m^{*}(I)=m^{*}(I \cap E)+m^{*}(I \backslash E)
$$

for every open n-interval I. [You can use the fact that $m^{*}(I)=\ell(I)$ for an n-interval I.]

