Department of Mathematics and Statistics
Measure and Integral
Exercise 1
20-24.1.2014

1. (a) Find $\inf E$ and $\sup E$ when $E=\left\{\frac{1}{\log x} \in \mathbb{R}: x>1\right\}$.
(b) Suppose that $\emptyset \neq B \subset A \subset \mathbb{R}$. Prove that

$$
\inf A \leq \inf B \leq \sup B \leq \sup A
$$

(c) Let $\emptyset \neq A \subset \mathbb{R}$ and $-2 A=\{-2 x: x \in A\}$. Prove that

$$
\inf (-2 A)=-2 \sup A
$$

2. Let $V_{1}, \ldots, V_{k} \subset \mathbb{R}^{n}$ be open and $F_{1}, \ldots, F_{k} \subset \mathbb{R}^{n}$ closed subsets of \mathbb{R}^{n}. Prove that $\cap_{j=1}^{k} V_{j}$ is open and $\cup_{j=1}^{k} F_{k}$ is closed. Give examples of the following phenomena: (a) $V_{j} \subset \mathbb{R}$ is open for every $j \in \mathbb{N}$ but the intersection $\cap_{j=1}^{\infty} V_{j}$ is not open; (b) $F_{j} \subset \mathbb{R}$ is closed for every $j \in \mathbb{N}$ but the union $\cup_{j=1}^{\infty} F_{j}$ is not closed.
3. Let I be an uncountable set and $a_{i}>0$ for every $i \in I$. Prove that

$$
\sum_{i \in I} a_{i}:=\sup _{J \subset I \text { finite }} \sum_{j \in J} a_{j}=+\infty .
$$

4. Let

$$
\mathcal{B}=\left\{B^{n}(x, r) \subset \mathbb{R}^{n}: x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}, r \in \mathbb{Q}, r>0\right\} .
$$

Prove that \mathcal{B} is countable. [In other words, \mathcal{B} is the family of all open balls $B^{n}(x, r) \subset \mathbb{R}^{n}$ whose radii r are positive rational numbers and the coordinates of the centres x are rational numbers.]
5. Let $A \subset \mathbb{R}^{2}$ be countable. Prove by using the definition of an outer measure that $m_{2}^{*}(A)=0$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $G_{f}=\left\{(x, f(x)) \in \mathbb{R}^{2}: x \in\right.$ $[0,1]\}$ its graph. Prove that $m_{2}^{*}\left(G_{f}\right)=0$.

