Department of Mathematics and Statistics Measure and Integral Exercise 1 20-24.1.2014

1. (a) Find $\inf E$ and $\sup E$ when $E = \{\frac{1}{\log x} \in \mathbb{R} : x > 1\}$. (b) Suppose that $\emptyset \neq B \subset A \subset \mathbb{R}$. Prove that

$$\inf A \le \inf B \le \sup B \le \sup A.$$

- (c) Let $\emptyset \neq A \subset \mathbb{R}$ and $-2A = \{-2x \colon x \in A\}$. Prove that $\inf(-2A) = -2 \sup A.$
- 2. Let $V_1, \ldots, V_k \subset \mathbb{R}^n$ be open and $F_1, \ldots, F_k \subset \mathbb{R}^n$ closed subsets of \mathbb{R}^n . Prove that $\cap_{j=1}^k V_j$ is open and $\cup_{j=1}^k F_k$ is closed. Give examples of the following phenomena: (a) $V_j \subset \mathbb{R}$ is open for every $j \in \mathbb{N}$ but the intersection $\cap_{j=1}^{\infty} V_j$ is not open; (b) $F_j \subset \mathbb{R}$ is closed for every $j \in \mathbb{N}$ but the union $\cup_{j=1}^{\infty} F_j$ is not closed.
- 3. Let I be an uncountable set and $a_i > 0$ for every $i \in I$. Prove that

$$\sum_{i \in I} a_i := \sup_{J \subset I \text{ finite}} \sum_{j \in J} a_j = +\infty.$$

4. Let

$$\mathcal{B} = \{ B^n(x,r) \subset \mathbb{R}^n \colon x = (x_1, \dots, x_n) \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0 \}.$$

Prove that \mathcal{B} is countable. [In other words, \mathcal{B} is the family of all open balls $B^n(x,r) \subset \mathbb{R}^n$ whose radii r are positive rational numbers and the coordinates of the centres x are rational numbers.]

- 5. Let $A \subset \mathbb{R}^2$ be countable. Prove by using the definition of an outer measure that $m_2^*(A) = 0$.
- 6. Let $f: [0,1] \to \mathbb{R}$ be continuous and $G_f = \{(x, f(x)) \in \mathbb{R}^2 : x \in [0,1]\}$ its graph. Prove that $m_2^*(G_f) = 0$.