SOME BASIC FACTS FROM MARTINGALE THEORY

DARIO GASBARRA

1. CONDITIONAL EXPECTATION AND MARTINGALES
Let (2,3, P) be a probability space.

Definition 1. Conditional expectation: Let X be a random variable, (which
is F-measurable) and a sub o-algebra § C F, Ep(X|9) is a G-measurable
random variable such that for all B € G

Ep(1pX) = Ep(1pEp(X|9))

Properties: i) Ep(Ep(X|9)) = Ep(X) ,
ii) if Y is §-measurable Ep(XY|9) = Y Ep(X|9).
i) if Y 1L G, Ep(Y|G) = Ep(Y).

iv) If Ep(X?) < oo, the random variable Ep(X|G) is the orthogonal projec-
tion of the r.v. X to the subspace L*(2,G, P) C L?(Q, F, P):

B((X ~ Ep(X|9)") = _min B((X~Y)?),

v) the conditional expectation is linear:

Ep(aX +bY|9)() = aEp(X|9)(w) + bEp(Y|9)(w)

vi) The conditional expectaion is linear is non-negative, if X(w) > 0 P a.s.
, then F(X|G)(w) >0 P a.s.

Let @ a probability measure which dominates P (P < ) on a o-algebra
§ C F, which means that Q(A) = 0 = P(A) = 0 for all A € G. The
Radon-Nikodym derivative of P w.r.t @ is a §-measurable random variable

_ dP|S
= aqlg“ =°

This means that P(dw) = Z(P, Q)(w)Q(dw) on G, and if X is a §-measurable
random variable we change the measure to represent the expectation w.r.t.
P as an expectation w.r.t. Q:

23 (w) = Z7(P.Q)(w)

Ep(X) = EQ(XZ(P,Q))

We have that 0 < Z9(P,Q) € LY(2,5,Q), ja Eg(Z(P,Q)) = 1.
In statistics Z(P, Q) is called likelihood ratio.
Note that if A C G and P < @ on G, then trivially P < @) on A, and

Z4(P,Q) = Eq(Z°(P,Q)|A).
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This is the Q-martingale property for nested o-algebrae.

We have also a formula to change the measure in the conditional expectation.
For P« @Q, 5 CTJ, and X is F-measurable, Bayes formula holds:

EQ(XZ(P,Q)[S)
Eq(Z(P,Q)[9)

Sometimes it is also called abstract Bayes formula. The proof is not difficult,
for B € G, denoting Z = Z7 (P, Q),

Ep(X1p) = EQ(ZX1p) = Eq(Eq(ZX13(9)) = Eq(Eq(2X[9)1B)

EQ(Z‘S) B EQ ZX‘S E (ZX‘S
(EQ<Z\9>EQ<ZX’9>1B> = o275, 779) Eo(Z]9)

and the result follows from the definition of conditional expectation.

Ep(X19) =

1p) —Ep( 1p)

Example 1. As an exercise we show that the elementary Bayes formula
used in statistics follows as a special case:
Let (X,Y) a random vector with values in IR?, with

P(X edz,Y € dy) = m(x)p(y|x)dzdy

We work directly on the canonical space Q@ = IR%2. On the o-algebra F =
o(X,Y), we take as reference measure a dominating product measure, for
example Q(dx,dy) = w(x)dxdy (although Q is not a probability measure,
Bayes formula works also in this case).

Clearly P < Q and Z(P,Q) = %(az, y) = p(y|z).

When we condition to the sub-o-algebra § = o(Y'), our (abstract) Bayes
formula says that for any bounded measurable function f(z),

E(f(X)Z(P,Q)lo(Y)(w) _ h[f(x)ﬁ(a:)P(Y(wﬂx)dx
EQ(Z(P,Q)|o(Y))(w) éﬁ(x)p(y(w)m o

Ep(f(X)|o(Y))(w) =

which is the elementary Bayes formula as we use it in statistics.

We introduce now a filtration IF := {F; }+>0, which is an increasing sequence
of o-algebrae shich that, for all s <t ,F, CF, C F.

( here it does not matter whether the time is discrete or continuous, we can
always imbed discrete time in continuous time by taking F; = J;)).

Definition 2. A process M, is a (P,IF)-martingale if My is F; measurable,
M, € L'(P), and for s <t

Ep(M|Fs) =
When
Ep(My|Fs) <My , s<t
we say that (My) is a (P,{F})-supermartingale, and if
Ep(My|Fs) > Ms , s<t
(My) is a (P,{F:})-submartingale.
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Given all the past, the conditional expectation of a future value of a mar-
tingale is the current value.

Note that the martingale property depends on the measure P and on the
filtration {JF:}.

Given two measures P and @ defined on (€2, F) we consider at each time
t the restriction of the measures to the current information o-algebra F,

Pt - P‘S}? Qt — Q|3}'
If P, < Q¢ on F;, we define

d
Z:(P,Q) = dQPj

From the definition it follows that Z; € LY(Q,J:) and Z(w) > 0.
We show that Z; is a (Q,IF) martingale: for s <t if B € J, also B € J;
and we have

P(B) = Ep(1p) = Eq(Zs1p) = Eq(Zi1p)
which means that Z, = Eg(Z|Fs).

Example 2. On a probability space (2, F) we have a sequence of (real val-
ued) random variables (X1, Xa,..., Xy, ...) , and two probability measures
P and Q such that (X;) are independent and identically distributed under
both P and Q. We assume that P(X; € dx) = f(x)Q(X1 € dx). Let
F=o0(X1,...,Xs), t € IN. It follows that

Z(PQ) = [ f(X).

s€N:s<t
Exercise 1. Check that Z(P,Q) is a (Q,{F:})-martingale.

Definition 3. We say that a process (Xy) is adapted if X, € F; for all t,
and in the discrete-time situation it is predictable if X; € Fy_1 for all t.

Theorem 1.1. (discrete-time Doob-Meyer decomposition,).
If (Xy) is adapted to the filtration {F;}, and E(|X:|) < oo for all t =
0,1,...,T then there is an unique decomposition

X =Xo+ A+ M,
where Ay is {F}-predictable and My is a {F}-martingale with Ay = 0 and
?]{O();?.is a supermartingale (respectively submartingale) the process Ay is
non-increasing, (respectively non-decrasing submartingale).
Proof
AX; = (AXy — Ep(AXyFi—1)) + Ep(AXy|Fi—1) = AM; + AA,

where
t

t
A=) Ep(AXy|Fi1), My=> (AX,— Ep(AX|F; 1))
s=1 s=1
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If another qub decomposNition of X existed, X; — X :/Nlt + ]\th we would
have (My; — M) = (A; — A;) which means that (M; — M) is a predictable
martingale, which is necessarly the constant zero.

Definition 4. If (Y;) and (X;) are sequences we define the stochastic integral
of Y with respect to X as the sequence

t
(V- X) =) Y.AX,
s=1

which is called martingale transform or discrete stochastic integral

Theorem 1.2. Assume that (Y;) {F¢}-predictable process and (M) is a
(P, {F:})-martingale. If Yy is a bounded random variable for allt, or alterna-
tively both Yy and My are square integrable r.v., it follows that E(|Y;AM,;|) <
oo. Under such assumptions, the stochastic integral (Y - M) is a martingale.

Proof: Exercise.

2. SQUARE INTEGRABLE MARTINGALES AND PREDICTABLE BRACKET

A (P, {F:})-martingale (M;) is square integrable when E(M?) < oo for all
t.

If My, N; are square integrable martingales then by using Cauchy-Schwartz
inequality

B(MN) < / EQI2)\/B(NZ) < oo

so that the product (M;Ny) is in L' and it makes sense to consider its
Doob-Meyer decomposition:
We have

MiNy — My _1Ny_1 = My _1AN; + Ny 1AM + AMAN; =
M1 ANy + Ny_1AM; + (AM;AN, — Ep(AMAN;|Fy—1)) + Ep(AM;ANy|Fy—1)

We introduce the predictable process

t
(M,N);:=> Ep(AM,AN,|F, 1)
s=1
We obtain the Doob-Meyer decomposition
MtNt = M(]NO + <M, N>t —+ my
where dm; the sum the martingale increments
dmt = Mt—lANt + Nt—lAMt + (AMtANt — EP(AMtANt‘SFt_l))

where the integrability conditions in the definition of martingale follow from
Cauchy-Schwartz inequality since we have assumed M and N are square-
integrable.

We denote also

t
[M, N], := Z AM,AN;
s=1
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it follows that the process ([M, N]; — (M, N);) is a (P, {F;})-martingale.

[M, N]; is called quadratic covariation or square-bracket process, while (M, N),
is called predictable covariation, or predictable-bracket process.

Since E((AM;)p|Fi—1) > 0, the process ([M, M];) is a submartingale and
therefore ((M, M);) is non-decreasing. The notations [M]; := [M, M]; and
(M) := (M, M), are also used.

Note [M,N]; does not depend on the measure P, but the predictable
bracket (M, N); does !

Definition 5. Two square integrable martingales (My), (Ny) are orthogonal
if the product (MyNy) is a martingale. Equivalent conditions are

i) [M, N]; is a martingale,

ii) (M, N); =0, which means Ep(AM;AN¢|F;_1)(w) =0 P a.s.

Note that this definition extends to the case when M; is a martingale (not
necessarly square integrable) and Ny is a martingale in L>°(P) V.
Note also that

A(M); = Ep((AM;)?|F_1)(w) < oo and Ep(A)M;() < 0o <= Ep(AM?)

It is possible that A(M); < oo (P = 1) but Ep(AM?) = oo (M, is not
integrable). In such case we can still use the notion of predictable covariation
and orthogonality of martingales.

3. ORTHOGONAL PROJECTIONS IN THE SPACE OF SQUARE INTEGRABLE
MARTINGALES

Let M and N two square integrable martingales,
We write

t

(31)  Ne=No+ (H- M)+ N;"=No+ Y HAM, + N
s=1

where (H;) is the predictable process

A(M,NY, Ep(AM;AN|F,_1)

Hy=1(A(M,M);>0) 1(Ep((AM)?|F—1) > 0)

A(M, M),

and N;- is a P-martingale orthogonal to M;.

Ep((AM:)?|Ft-1)

Note first that since the conditional expectation is a positive operator,
Ep <AMt2|SFt1)(w) >0

and therefore
Ep <AMt2|3"t_1)(w) =0

if and only if

P(AME =0[F1)(w) =1
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otherwise for some ¢ > 0
P<AME > e|lF 1) (w) >n>0
which is in contradiction with
Ep <AMES’t1)(w) =0.
This implies
Ep <ANtAMtCﬂ_1)(w) =0

Note also that H; € L?(Q,F;_1P), since

AMAN|F,-1) )
Er ) = P ({ G asapig sy | ) S Er(ANT) <o

where we used the Cauchy-Schwartz inequality for the conditional expecta-
tion together with the properties of the conditional expectation.

2
{EP(AMtANt\?t—l)(w)} < Ep(AM|F1) () Ep(AN)|F 1) ()

4. MARTINGALE PROPERTY AND CHANGE OF MEASURE
Theorem 4.1. Let Q < P and let

2w) = 2@ P) = T2 )

Then My is a (Q,{F:})-martingale if and only if the product (M;Z;) is a
(P, {F:})-martingale.

Proof for s <t, let A€ Fs.
Eq(1a(My — My)) = Ep(1aZy(My — My)) = Ep(1a(Z My — ZsM))

where we use the properties of the conditional expectation. By definition of
conditional expectation it means that

EqQ(M;|Fs) = M, if and only if Ep(Z;M|F,) = ZsMj

5. DOOB DECOMPOSITION AND CHANGE OF MEASURE

Suppose that M is a (P, J;) martingale with My =0 and AM; > —1.

Zy=E&(M), = [J(1 +AM) = (1 +) ZslAM5> >0

s=1 s=1

and we define on each JF; consistently a measure
Qt(dW) = Zt(W)Pt(dUJ)

If (Z¢)¢=0,,.., 7 is integrable, then (Z;) is a P-martingale and Q:(Q) =
Ep(Z:) = Zp = 1 which is a probability measure.
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Example 3. Assume that {&(w) :t=1,...,T} arei.i.d. N(0,1) distributed
(univariate gaussian with 0 mean and variance 1 ).
For a given 6 € IR Define

= Z{exp(egs — %02) -1}
s=1

This is a martingale with independent increments, and AM; > —1.
Then we set Zy(0) =1 and

t

Zy(0) = E(M(0): =1+ > Z 1 (0)AM, = [ | (1 + exp(0¢, — %92) - 1) =
s=1

s=1
t 1, t 1,
Hexp(0§S—§9 ) = exp 9253—59 t
s=1 s=1

It follows that Z;(0) is integrable, since under P, the r.v. (22:1 fs) is
gaussian N(0,t). Since integrability is satisfied, Zy(0) is a P- martingale,
which defines a probability measure dQ¢(0) = Z;(0)dP; on F;.
For example for Ny = 22:1 &, the martingale decomposition under Q(0) is
given by

AN; = (AN — A(N, M (0)):) + A(N, M(0)):

1

{& = Ep(&exp(08 — 560%)} + Ep(& exp(06 — 762 ) ={&—0}+9
meaning that (N — 0t) is a Q(0)-martingale.
Here

Ep (‘ft exp(0¢; — %92)) % log Ep (exp(@ﬁt)) =0

Assume that M and N are square integrable P martingales, AM; > —1 and
Zy=&M),t =1,...,T with Zp € L*(P) for all t.
By projecting N on M obtaining the orthogonal martingale decomposition
N; = No + (H - M); + N;+
What happens to the martingale property of NV and M under the new mea-
sure ?
Proposition 5.1. (Girsanov theorem in discrete time) The Doob decompo-
sition of N under Q) is given by
Ny = No+ (H - (M,M)),+ (H- (M — (M, M))), + N;*
where (M — (M, M)); is a Q-martingale and N+ is a martingale under both
P and Q, and (H - (M, M)); is a predictable process.
Proof From Bayes’ formula of change of measure in conditional expectation,
Ep(ZAM|Fi—1)
Ep(Zi|Fi-1)

EQ(AMtwjtfl) = EP(AMt ’?t 1)

AZt

Ep(AM,(1+ )\33 1) :EP(Ath,l)+EP((AMt)2|fft,1) =0+ A(M,M),

which means that (Mt — (M, M);) is a Q-martingale.
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On the other hand
Eg(AN|Fi-1) = Ep(ANFAM| 1) = AN+, M), =0

since Nt and M are orthogonal martingales.

In example 3, we compute (M (), M(0)), and find the law of (£) under the
probability measure Q7 (9).

Recall that the characteristic function of the gaussian distribution N(u, o)
is

1
ox(u) == B, 52 (exp(iuX)) = exp (iup — §u202)
where X (w) is N(u, 02)-distributed and 4 is the imaginary unit.
Now we want to compute the characteristic function of the vector &1, ...,&
under the measure Q.
We have that for v = (uq,...,u;) € IR
exp Zusfs Ep Zyexp(i Zusgs =
s=1
d 1
Ep (exp (Z(zus +0)¢s — 292t)> =
s=1
t 1
Ep((%Xp(Z;i(us —if)&s + 22( s —10) )) exp( Z{ s —i0)? 92}> =
S= S=

ﬁ Ep (exp((us —i0)&s + —i0) )) Hexp (s — 5 s)

- 1 X EP(eXp( (0 +£s)us)

this means that the law under Q of & is the same as the law under P of
(0+&), ie. under Q (&5 :s=1,...,t) are i.i.d. N(0,1).

6. MARTINGALE PREDICTABLE REPRESENTATION PROPERTY

Let M be a P-martingale w.r.t. to a discrete time filtration {J; : t € IN}.
We say that M has the martingale representation property in the filtration
IF = {3}, if any other bounded (P, IF)-martingale (X;) can be represented
as a constant plus a martingale transform w.r.t. M

t
Xy =Xo+ (Y M) =Xo+ ) Y.AM,
s=1
where (Y;) is IF-predictable, that is Y; is F;_1-measurable for all ¢.

Since X is a bounded martingale, also AM,(w) conditionally bounded given
F,—1 is bounded on the set {w : Y(w) # 0},

AM;(w) <[ AXy || (py |Vi(w)

Therefore the M; is locally bounded, where a localizing sequence is given
for example by

= inf{t H AXt+1 HLOO(P) |Y;+1(w)

}—1

"> n}
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which is a stopping time since {r, < t} € F;.
Note that this notation covers also the case of d-dimensional martingales.
In such case (Ys) is a d-dimensional predictable process, and

t t d
> Y AM, =) Y YIAM,()
s=1

s=1 =1

Lemma 6.1. Let (M) be a (P,IF)-martingale.
(My) has the predictable representation property in the (IF)-filtration if and

only if
the only bounded (P,IF)-martingales (N;) such that the product (MyNy) is a
(P, TF)-martingale are constant.

Proof Assume that the PRP holds for M. Then every bounded martingale
N has the form Ny = (H - M);. If N is such that (N;M;) is a martingale,
necessarly

A(MiNy) = My_1 AN, + Ny 1AMy + AMAN, =

(My—1Hy + Ny—1)AM; + Hy(AM,)?
This gives a contradiction, since

0 = E(A(M;N)|Fy—1) = HiE((AM)?|F1—1) #0

with positive probability unless either AM; = 0 or H;y = 0. This implies

that N, is constant. The same argument gives the opposite implication.

Theorem 6.1. In the discrete time setting, M has the martingale repre-
sentation property in the filtration IF if and only if there are no other mar-
tingale measures QQ ~ P with bounded density for (M), that is if Q ~ P,
Z(w) = %(w) is essentially bounded and (My) is a also a (Q,TF)-martingale,
necessarly Q = P.

Proof For simplicity we set Fy = {Q,0}. Assume that Q ~ P. We know
that Z; = Z,(Q, P) is a (P, IF)-martingale.

By the predictable representation property,

AZy = Zy 1 Hi AM,;

where H; is F;_1-measurable.
We show that M is not a martingale under ), unless H; = 0.

A AZ,
Zes z)e) =
Ep(AM,(1+ H/AM,)|F-1) = Ep(AM;|Fi—1) + Ep(Hy(AM,)?|F—1) =
0+ HiEp((AM;)?|F1-1) #0
unless H; = 0 P-a.s. for all t. This means that Z; = 1 for all t and Q = P.

Eq(AM;|F—1) = Ep(AM,;

|Fi—1) = Ep(AM(1+

Viceversa, suppose that the representation property does not hold for M in
the filtration IF.

This means that there is some other bounded (P, IF)-martingale N such that
the product (M;NV;) is a martingale. We can take N satisfying Ny = 0 and
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|IN¢;| < 1. It is a fact from martingale theory that a bounded martingale
(Ny) has almost surely a limit.
Define the measure on F;

N,
dQ; = (1 + 2t> dP, = Z;(w)dP;

Note that (Z;) is a P-martingale with 0 < § < Z(w) < 3/2 and Zp = 1, so
that Q; is a probabilty measure equivalent to P; on J;.
We have that
Ny M,

M,Z; = M, + (tZt)
is a P-martingale since (M;) and (N;M;) are P-martingales. This means we
have constructed another measure @Q; ~ P;, with Q; # P, such that (M,) is
a (Q-martingale.

Example 4. Consider a sequence of i.i.d. standard normal random vari-
ables (&) on the probability space (0, F, P). with the filtration of o algebrae
Fr=0(&:1<s<t).

t
Define My = > &. My is a P-martingale, since it has independent incre-
=1

s=
ments and centered. My is also square integrable, since the increments are
gaussian. Note that F; = o(Ms:1 < s <t).

¢

Note that n, = (£2 — 1) are also i.i.d. and centered, and Ny = Y s is also
s=1

a P-martingale.

It follows that the product (N;My) is a P-martingale,m since Ep(&n) =
Ep(&§ — &) = 0.

The filtration {F;} generated by (M) contains the P-martingale (N;) which
is is orthogonal to (My). Neither M or N have the predictable representation
property.

We show that there exist an equivalent martingale measure for M. Note that
AN; = (¢2 — 1) > —1 P-almost surely.

Therefore

t t
Zy=[[Q+AN)=14> Z, 1AN, >0

s=1 s=1

defines an equivalent probability measure dQy = ZidP;.

By Girsanov theorem, since (MyNy) is a P-martingale it follows that also
(MZy) is a P-martingale. But this means that (My) is a Q-martingale. So
Q ~ P but Q # P is another martingale measure for P.

In order to construct a bounded (P,{F;})- martingale we can take the i.i.d.
sequence of centered and bounded random variables

e = (§ A1) — Ep(&f A1) € (—1,1)
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It follows that

Ep(&et) = Ep(&4(& A1) — Ep(&)Ep(& A1) =
Ep(&1(1&| > 1)) + Ep(£81(|&] < 1)) +0=0

since the distribution & is symmetric around 0.
Therefore for any fized T, the process stopped at T

tA\T

XtT = Z Es
s=1

is a bounded P-martingale orthogonal to (My).

7. APPLICATION TO HEDGING

Consider the finite probability space (2, F, P) where Q = {0, 1}T, with T <
o0, and F = 29, the finite collection of all possible subset, and probability
measure satisfies P({w}) > 0 for all w € Q.

An history is a vector w = (w1, ...,wr) € Q and denote w® = (wy,...,w;)
fort <T.

Consider a market with a bank account B; and a stock price Si, t =
0,1,...,7, adapted to the filtration IF with F; = o(ws, s < t), Fo = {Q,0}
We assume that there are {F;}-predictable processes Uy(w) > Ri(w) >
Di(w) > —1. By > 0 and Sp > 0 are determistic values, and we let

t
By =By [[(1+ Ry,
s=1
t

St = S() H(l + Dt + wt(Ut — Dt))
s=1
Suppose that G(w) is a F;-measurable contingent claim, and we want to find
a self-financing hedging strategy (8, y:) satisfying

Vi = BBy + 7St = Bry1Bs + ve415¢

Let G(w) = G(w)/Br(w) the discounted contingent claim.

We show first that there is an unique probability measure @ such that Q ~ P
and the discounted process S; := (S;/B;) is a Q-martingale.

Once we have shown that @ is the unique martingale measure for (S;) in
the filtration IF, it follows that every (@, IF) martingale (N;) has the repre-
sentation as

t
Ny =No+) H.AS,

u=1

where (H;) is a IF-predictable process. In particular we can take Ny =
Eq(G|3:), and obtain when t =T

i - GW)
G = 503

T
= E(G|Fr) = Eq(G) + Y _ mAS,

t=1

where () is a IF-predictable process.
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This gives the unique price ¢(G) = Eg(G)By and the hedging strategy for
the contingent claim G.

Lets’ first compute the martingale measure Q).

AS _ & St—l _ St—l (1 + Dt + (Ut — Dt)wt) -1 _
! By (1+ Ry)

B:  Bi

Si—1

————((U; — Dy)wy — (Dy — R
Bt—1(1+Rt) (( t t) t ( t t))

Taking conditional expectation with respect to a measure (), and imposing
the martingale property

_ Sy
EqQ(AS)|F;1) = m((m — Dy)Eq(wi|Fi-1) — (Dy — Ry)) =0
which implies that @ is a martingale measure for (S;) if and only if
_ Ry — Dy)
= .= E Fi1) = (Fy !
q(w™) Q(welFe-1) U, =Dy’

where g;(w'™!) € (0,1) is a probability since we have assumed that D; <
R; < U, P a.s, and it is uniquely determined. We define globally the unique
risk-neutral measure @ as follows:

T
Q(w) = Hqt(wt—l)wt(l _ qt(wt_l))l_wf
t=1

and note that Q({w}) > 0 for all w € 2, therefore Q) ~ P.
We define the basic Q-martingale

t

M; = Z(Ws - QS(W(S_I)))

s=1
We write
AS) = (U, — D)wr - qi(w V) = (U~ D)AM;
Bt_l(l + Rt) Bt_l(l + Rt)
and we can represent AM; in terms of AS;:
B 1(1+Ry) , 5
AMy = ————— 2 AS,
" S (U D)

Next we show how to use the martingale representation to compute the
hedging strategy for the contingent claim G.

Definition 6. If X (w) is a Fp-measurable random variable, we define its
discrete Malliavin derivative or stochastic gradient at time t w.r.t w; as

th(w) = X(wl,. . .,wt_l,l,wt+1,...wT) —X(wl,...,wt_l,(),wtﬂ,.. .wT) s
for1<t<T.

Note that in general V, X (w) is not F; measurable unless the r.v. X(w) =
X (w?) is F-measurable. In such case VX (w) is also F;_j-measurable.
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In particular the following quantities are Fpr_j-measurable.

vTG("‘)T_I) = (G(wT_la 1) + G(WT_17O)) )

£ 3 : 1
T-1y _ T—1 1 T_1 _
VrGw' ) = (Gw 1)+ G(w' 7,0)) )

-1
- VTgT(?;)) since Br(w) is Fr_j-measurable,

and
VrSr(w! ™) = (Sp(w? =1, 1) + Sr(w?™1,0)) = Sp_1 (Up(w?™h)
VTS'T(wal) = LVTST((,L)Tfl)
Br
Note also that
Sp_1
T

ASp = (87— Sp-1) = (Ur — Dr)(wr — qr) = Vo Sr(wr — qr)

so that we can write
1 _ Br

AMp = — T=1)y = ——ASp = AS
T = (wr — qr(w ) V., 5r T V1 S7 T
We have
Gw) =G wr) =GW 0 + (G 1) - G ,0)wr =
GwI=1,0) + VrG(w! Hwr =
Gw!™,0) + V7G(w! Ngr + VoG (W' Y (wr — gr) =
_ _ _ VG -
EQ(G’S:T_l) + VoG AMt = EQ(G‘?T_l) + T BrAST
VTST
- VrG VG
= FEo(G|Fp_ —— ASt — Ry Sr_
ol ’T1)+VTST T Y75y TST—1
= VrG V1G St_
= Eo(GFr_1) + = —ASp — = ZTZL AR,

VTST r VTST BTfl
By investing at time (7' — 1) the (random) value
EQ(G|Fr-1)(w)

cr-1(G) = EQ(G|Fr—1(w)Br—1(w) =

1+ Ry
we replicate the contingent claim G as follows: we buy the amount of stocks
VG
= N

at price ypSr_1 (if v < 0 we short-sell stocks) , if necessary by borrowing
from the bank at the predictable interest rate Rp, and buy the amount of

1
= _1(G) =y Sr_
Br. <CT 1( ) YroT 1>

bonds at price Byr_1, so that our capital is
Vr_1=cr—1(G) = BrBr-1 +1rSr—1
At time (T — 1) the value of our portfolio is
Vr—1 = BrBr-1+rSr—1 = cr-1(Q)

Br

— DT(wT_l)) .
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while at time 7" the value of the portfolio becomes

Vi = BrBr +yrSt = frBr-1(1 + Rr) + yrS7—1 + 97 AST
= EQ(G|Fr-1) = vrSr-1(1 + Rr) + v0Sr—1 + 77ASr
= EqQ(G|Fr-1) — yrSr—1Rr + y7AST =
Eq(G|F7r-1) +vr(ST — (1 + Rr)ST-1) = EQ(G|F7-1) + BryrASt = G(w)
Remark The martingale measure Q when it is unique gives a device to
compute the price and hedging strategy. In fact the price hedging can be
computed without using probability, once we have assumed that all histories
w € () have positive probability:
A direct way to compute the hedging without using martingales is to solve
at time T the system of equations:
G(w"™',0) = BrBr +vrSr-1(1 + Dr)
G(wTﬁl, 1) = BrBr +yrSr—1(1 + Ur)
By substracting these two equations we get

B VTG(WT_l)
St—1(Ur — Dr)

yr

and if the two equations with respective weights (1 —gr(w? 1)) correspond-

ing to wr =0 and qT(wal) corresponding to wr = 1 we obtain
1
pr = E(EQ(G|?T—1) —yrEq(Sr|Fr-1))
1 St-1
= —Fo(G|Fr_1) —
By Q(GlFr—1) M E

combining these toghether we get the price of the contingent claim at time
(T —1):

cr—1(G) = prBr—1 +v7rS1-1 = Eq(G|F7r-1)

1+ Ry
The martingale method has the advantage that it gives a probabilistic in-
terpretation to the price of the contingent claim, which can be computed
directly as a QQ-expectation.

The other reason is that the martingale method can be extended to the
continuous-time setting.

The price and the hedging strategy in the whole time interval t =1,...,T,
is then obtained by induction:

Let ¢:(G) be the price of the contract G at time ¢ < T. This is a F;-
measurable contingent claim. This means that are able to hedge the contin-
gent claim G expiring at time T if and only if at time ¢ we own a portfolio
of value ¢;(G). By repeating the martingale argument or by writing directly
the system of equations we find the price of the contract at time (¢t — 1)
ci—1(G) and the replicating portfolio B(w!™1), v (w!™1).

The advantage the martingale method is that enables to compute directly
price and replicating strategy at all times ¢ by computing QQ-expectations.
The predictable representation property of the Q-martingale M gives
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Theorem 7.1. Discrete Clarck-Ocone formula:

where by definition ViEq(G(w)|Ft) is Fi—1-measurable.
We set
_ ViEg(Gw)I5)
B0 V.5,

This gives

‘/t = EQ(G‘?t) = EQ(G‘?t_l) + ’}/tBtAgt

EqQ(G|Fi-1) <EQ(G\fﬂ—1) ) 1
= AS, — e — %S AB
11 R, + A5 + 1+ R, Veot—1 B, -l

= Vio1 + AS; + B AB;

where

Eq(G|F-1) > 1
=== _~S;_
Bt < 1+ R, Yert—1 Bi1

This means that to obtain a portfolio with value Eg(G|J;) at time ¢, we
need to invest

Ct_1 i — EQ(G|9‘~,5_1)/(1 + Rt)

at time (¢ — 1). Equivalently, to have EQ(G%KT‘}) in our portfolio at time
t we need to invest the amount
By
Eq(G
QG5
Inductively , to have G = Eg(G|JFr) at time T we have to invest at time
s < T the amount

|Fi—1) at time (t —1) .

B
(G) = Eq(G-151)
at time ¢.
The hedging at time (¢t — 1) is given by
o vtEQ(G(w)%‘gjt) . vtCt(G)
e ViSi T

By = <Ct1(G) - ’Yt5t1> Btl_l

giving
t
Vi =a(G) = co(G) + > (uABu + fuAB.)

u=1
T
Vr =G =c(G)+ ) (uABu + BuABy)

u=1
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When R, is deterministic, we can take the discounting factors B;/Br out-
side the conditional expectation.

If (Dy, Ry, Uy) are all deterministic, then under the martingale measure @ the
random variables w; is independent from the past. Then the computation
of the hedging strategy may be simplified by using the following formula:

Corollary 7.1. If (D¢, Ry, U;) are deterministic at all t < T, conditional
expectation and gradient commute in Ito-Clarck formula

ViEq(G|F:) = Eq(ViG|Fy) = Eq(ViG|Fi—1) ,
giving
EqQ(G|F1)(w) = E(G) + Y | EQ(VG|Fs) (ws — gs(w™)) .
s=1

Proof When w = (wy,...,wr) we denote w®” the vector (wy,...,wr).
Using the independence of the r.v. (wy),

EqQ(ViG|Ft)(we) = > {GWT LW ) = G 0,0 T) QW)
wtthTe{0,1}T—t

= Vi Eq(G|F:)(wt)
which is &F;_j-measurable.

Example 5. Assume that Ry = r,U; = u, Dy = d deterministic, with —1 <
d<r<u. Then ¢ =q= (r —d)/(u—d) is constant. We have that

Sy = So(1 4+ u)N (1 4 d)t

t
where Ny = Y ws.
s=1

Then if G(w) = ¢(ST) is a plain european option, we compute the price at
time t = 0 using the distribution Binomial(q,T).

Vo = co(G) = BoEq(¢(St)/Br) =

T
(1+ T)_T Z (Z) (1 - q)T_"go(Sg(l +u)" (14 d)T_") .
n=0

Similarly since the conditional distribution of (Np—Ny) given Fy is Binomial(q, T—
t), at time t the price of the replicating portfolio is

Vi = ct(G) = BiEg(¢(St)/Br|F:) =

T—t
(1 + T)th ZO (T; t) qn(l . q)Tﬁtin(p(S()(l + u)Nt+n(1 + d)T*Ntfn) )
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with this amount of money, we invest in .41 stocks and invest the rest in
the bank account, with

Vitici41(G) t+1-T EQ(Vt—&-lG‘?t)
=——-F——><=(1+r7r B A e b A
T Vt+15t+1 ( ) St(u - d)
T—t—2
1 T—t—-2
t+1-T n _ NT—t—2-n
e rer IO DR | W LU E

n=0

% <90(SO(1 + U)Nt+n+1(1 + d)T—Nt—n—2) - C,O(So(l + U)Nt+n(1 + d)T_Nt_n_l))}



