SOME BASIC FACTS FROM MARTINGALE THEORY

DARIO GASBARRA

1. Conditional Expectation and Martingales

Let (Ω, \mathcal{F}, P) be a probability space.
Definition 1. Conditional expectation: Let X be a random variable, (which is \mathcal{F}-measurable) and a sub σ-algebra $\mathcal{G} \subseteq \mathcal{F}, E_{P}(X \mid \mathcal{G})$ is a \mathcal{G}-measurable random variable such that for all $B \in \mathcal{G}$

$$
E_{P}\left(\mathbf{1}_{B} X\right)=E_{P}\left(\mathbf{1}_{B} E_{P}(X \mid \mathcal{G})\right)
$$

Properties: i) $E_{P}\left(E_{P}(X \mid \mathcal{G})\right)=E_{P}(X)$,
ii) if Y is \mathcal{G}-measurable $E_{P}(X Y \mid \mathcal{G})=Y E_{P}(X \mid \mathcal{G})$.
iii) if $Y \Perp \mathcal{G}, E_{P}(Y \mid \mathcal{G})=E_{P}(Y)$.
iv) If $E_{P}\left(X^{2}\right)<\infty$, the random variable $E_{P}(X \mid \mathcal{G})$ is the orthogonal projection of the r.v. X to the subspace $L^{2}(\Omega, \mathcal{G}, P) \subset L^{2}(\Omega, \mathcal{F}, P)$:

$$
E\left(\left(X-E_{P}(X \mid \mathcal{G})\right)^{2}\right)=\min _{Y \in L^{2}(\Omega, \mathcal{Y}, P)} E\left((X-Y)^{2}\right) .
$$

v) the conditional expectation is linear:
$E_{P}(a X+b Y \mid \mathcal{G})(\omega)=a E_{P}(X \mid \mathcal{G})(\omega)+b E_{P}(Y \mid \mathcal{G})(\omega)$
vi) The conditional expectaion is linear is non-negative, if $X(\omega) \geq 0 P$ a.s. , then $E(X \mid \mathcal{G})(\omega) \geq 0 P$ a.s.
Let Q a probability measure which dominates $P(P \ll Q)$ on a σ-algebra $\mathcal{G} \subseteq \mathcal{F}$, which means that $Q(A)=0 \Longrightarrow P(A)=0$ for all $A \in \mathcal{G}$. The Radon-Nikodym derivative of P w.r.t Q is a \mathcal{G}-measurable random variable

$$
Z^{\mathcal{G}}(\omega)=Z^{\mathcal{G}}(P, Q)(\omega)=\frac{d P \mid \mathcal{G}}{d Q \mid \mathcal{G}}(\omega) \geq 0
$$

This means that $P(d \omega)=Z(P, Q)(\omega) Q(d \omega)$ on \mathcal{G}, and if X is a \mathcal{G}-measurable random variable we change the measure to represent the expectation w.r.t. P as an expectation w.r.t. Q :

$$
E_{P}(X)=E_{Q}(X Z(P, Q))
$$

We have that $0 \leq Z^{\mathcal{G}}(P, Q) \in L^{1}(\Omega, \mathcal{G}, Q)$, ja $E_{Q}(Z(P, Q))=1$.
In statistics $Z(P, Q)$ is called likelihood ratio.
Note that if $\mathcal{A} \subseteq \mathcal{G}$ and $P \ll Q$ on \mathcal{G}, then trivially $P \ll Q$ on \mathcal{A}, and

$$
Z^{\mathcal{A}}(P, Q)=E_{Q}\left(Z^{\mathcal{}}(P, Q) \mid \mathcal{A}\right) .
$$

This is the Q-martingale property for nested σ-algebrae.
We have also a formula to change the measure in the conditional expectation. For $P \ll Q, \mathcal{G} \subseteq \mathcal{F}$, and X is \mathcal{F}-measurable, Bayes formula holds:

$$
E_{P}(X \mid \mathcal{G})=\frac{E_{Q}(X Z(P, Q) \mid \mathcal{G})}{E_{Q}(Z(P, Q) \mid \mathcal{G})}
$$

Sometimes it is also called abstract Bayes formula. The proof is not difficult, for $B \in \mathcal{G}$, denoting $Z=Z^{\mathcal{F}}(P, Q)$,

$$
\begin{aligned}
& E_{P}\left(X \mathbf{1}_{B}\right)=E_{Q}\left(Z X \mathbf{1}_{B}\right)=E_{Q}\left(E_{Q}\left(Z X \mathbf{1}_{B} \mid \mathcal{G}\right)\right)=E_{Q}\left(E_{Q}(Z X \mid \mathcal{G}) \mathbf{1}_{\mathbf{B}}\right) \\
& =E_{Q}\left(\frac{E_{Q}(Z \mid \mathcal{G})}{E_{Q}(Z \mid \mathcal{G})} E_{Q}(Z X \mid \mathcal{G}) \mathbf{1}_{B}\right)=E_{Q}\left(Z \frac{E_{Q}(Z X \mid \mathcal{G})}{E_{Q}(Z \mid \mathcal{G})} \mathbf{1}_{B}\right)=E_{P}\left(\frac{E_{Q}(Z X \mid \mathcal{G})}{E_{Q}(Z \mid \mathcal{G})} \mathbf{1}_{B}\right)
\end{aligned}
$$

and the result follows from the definition of conditional expectation.
Example 1. As an exercise we show that the elementary Bayes formula used in statistics follows as a special case:
Let (X, Y) a random vector with values in \mathbb{R}^{2}, with

$$
P(X \in d x, Y \in d y)=\pi(x) p(y \mid x) d x d y
$$

We work directly on the canonical space $\Omega=\mathbb{R}^{2}$. On the σ-algebra $\mathcal{F}=$ $\sigma(X, Y)$, we take as reference measure a dominating product measure, for example $Q(d x, d y)=\pi(x) d x d y$ (although Q is not a probability measure, Bayes formula works also in this case).
Clearly $P \ll Q$ and $Z(P, Q)=\frac{d P}{d Q}(x, y)=p(y \mid x)$.
When we condition to the sub- σ-algebra $\mathcal{G}=\sigma(Y)$, our (abstract) Bayes formula says that for any bounded measurable function $f(x)$,
$E_{P}(f(X) \mid \sigma(Y))(\omega)=\frac{E_{Q}(f(X) Z(P, Q) \mid \sigma(Y))(\omega)}{E_{Q}(Z(P, Q) \mid \sigma(Y))(\omega)}=\frac{\int_{\mathbb{R}} f(x) \pi(x) p(Y(\omega) \mid x) d x}{\int_{\mathbb{R}} \pi(x) p(Y(\omega) \mid x) d x}$
which is the elementary Bayes formula as we use it in statistics.
We introduce now a filtration $\mathbb{F}:=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, which is an increasing sequence of σ-algebrae shich that, for all $s \leq t, \mathcal{F}_{s} \subseteq \mathcal{F}_{t} \subseteq \mathcal{F}$.
(here it does not matter whether the time is discrete or continuous, we can always imbed discrete time in continuous time by taking $\left.\mathcal{F}_{t}=\mathcal{F}_{[t]}\right)$.

Definition 2. A process M_{t} is a (P, \mathbb{F})-martingale if M_{t} is \mathcal{F}_{t} measurable, $M_{t} \in L^{1}(P)$, and for $s \leq t$

$$
E_{P}\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s} .
$$

When

$$
E_{P}\left(M_{t} \mid \mathcal{F}_{s}\right) \leq M_{s} \quad, \quad s \leq t
$$

we say that $\left(M_{t}\right)$ is a $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-supermartingale, and if

$$
E_{P}\left(M_{t} \mid \mathcal{F}_{s}\right) \geq M_{s} \quad, s \leq t
$$

$\left(M_{t}\right)$ is a $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-submartingale.

Given all the past, the conditional expectation of a future value of a martingale is the current value.
Note that the martingale property depends on the measure P and on the filtration $\left\{\mathcal{F}_{t}\right\}$.
Given two measures P and Q defined on (Ω, \mathcal{F}) we consider at each time t the restriction of the measures to the current information σ-algebra \mathcal{F}_{t}, $P_{t}=\left.P\right|_{\mathcal{F}_{t}}, Q_{t}=\left.Q\right|_{\mathcal{F}_{t}}$.
If $P_{t} \ll Q_{t}$ on \mathcal{F}_{t}, we define

$$
Z_{t}(P, Q)=\frac{d P_{t}}{d Q_{t}}
$$

From the definition it follows that $Z_{t} \in L^{1}\left(Q, \mathcal{F}_{t}\right)$ and $Z_{t}(\omega) \geq 0$.
We show that Z_{t} is a (Q, \mathbb{F}) martingale: for $s \leq t$ if $B \in \mathcal{F}_{s}$ also $B \in \mathcal{F}_{t}$ and we have

$$
P(B)=E_{P}\left(\mathbf{1}_{B}\right)=E_{Q}\left(Z_{s} \mathbf{1}_{B}\right)=E_{Q}\left(Z_{t} \mathbf{1}_{B}\right)
$$

which means that $Z_{s}=E_{Q}\left(Z_{t} \mid \mathcal{F}_{s}\right)$.

Example 2. On a probability space (Ω, \mathcal{F}) we have a sequence of (real valued) random variables $\left(X_{1}, X_{2}, \ldots, X_{n}, \ldots\right)$, and two probability measures P and Q such that $\left(X_{i}\right)$ are independent and identically distributed under both P and Q. We assume that $P\left(X_{1} \in d x\right)=f(x) Q\left(X_{1} \in d x\right)$. Let $\mathcal{F}_{t}=\sigma\left(X_{1}, \ldots, X_{t}\right), t \in \mathbb{N}$. It follows that

$$
Z_{t}(P, Q)=\prod_{s \in \mathbb{N}: s \leq t} f_{s}\left(X_{i}\right)
$$

Exercise 1. Check that $Z(P, Q)$ is a $\left(Q,\left\{\mathcal{F}_{t}\right\}\right)$-martingale.
Definition 3. We say that a process $\left(X_{t}\right)$ is adapted if $X_{t} \in \mathcal{F}_{t}$ for all t, and in the discrete-time situation it is predictable if $X_{t} \in \mathcal{F}_{t-1}$ for all t.

Theorem 1.1. (discrete-time Doob-Meyer decomposition).
If $\left(X_{t}\right)$ is adapted to the filtration $\left\{\mathcal{F}_{t}\right\}$, and $E\left(\left|X_{t}\right|\right)<\infty$ for all $t=$ $0,1, \ldots, T$ then there is an unique decomposition

$$
X_{t}=X_{0}+A_{t}+M_{t}
$$

where A_{t} is $\left\{\mathcal{F}_{t}\right\}$-predictable and M_{t} is a $\left\{\mathcal{F}_{t}\right\}$-martingale with $A_{0}=0$ and $M_{0}=0$.
If $\left(X_{t}\right)$ is a supermartingale (respectively submartingale) the process A_{t} is non-increasing, (respectively non-decrasing submartingale).

Proof

$$
\Delta X_{t}=\left(\Delta X_{t}-E_{P}\left(\Delta X_{t} \mid \mathcal{F}_{t-1}\right)\right)+E_{P}\left(\Delta X_{t} \mid \mathcal{F}_{t-1}\right)=\Delta M_{t}+\Delta A_{t}
$$

where

$$
A_{t}=\sum_{s=1}^{t} E_{P}\left(\Delta X_{t} \mid \mathcal{F}_{t-1}\right), \quad M_{t}=\sum_{s=1}^{t}\left(\Delta X_{t}-E_{P}\left(\Delta X_{t} \mid \mathcal{F}_{t-1}\right)\right)
$$

If another Doob decomposition of X existed, $X_{t}-X_{0}=\tilde{A}_{t}+\tilde{M}_{t}$ we would have $\left(M_{t}-\tilde{M}_{t}\right)=\left(A_{t}-\tilde{A}_{t}\right)$ which means that $\left(M_{t}-\tilde{M}_{t}\right)$ is a predictable martingale, which is necessarly the constant zero.

Definition 4. If $\left(Y_{t}\right)$ and $\left(X_{t}\right)$ are sequences we define the stochastic integral of Y with respect to X as the sequence

$$
(Y \cdot X)_{t}=\sum_{s=1}^{t} Y_{s} \Delta X_{s}
$$

which is called martingale transform or discrete stochastic integral
Theorem 1.2. Assume that $\left(Y_{t}\right)\left\{\mathcal{F}_{t}\right\}$-predictable process and $\left(M_{t}\right)$ is a $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-martingale. If Y_{t} is a bounded random variable for all t, or alternatively both Y_{t} and M_{t} are square integrable r.v., it follows that $E\left(\left|Y_{t} \Delta M_{t}\right|\right)<$ ∞. Under such assumptions, the stochastic integral $(Y \cdot M)_{t}$ is a martingale.
Proof: Exercise.

2. Square integrable martingales and predictable bracket

A $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-martingale $\left(M_{t}\right)$ is square integrable when $E\left(M_{t}^{2}\right)<\infty$ for all t.
If M_{t}, N_{t} are square integrable martingales then by using Cauchy-Schwartz inequality

$$
E\left(\left|M_{t} N_{t}\right|\right) \leq \sqrt{E\left(M_{t}^{2}\right)} \sqrt{E\left(N_{t}^{2}\right)}<\infty
$$

so that the product $\left(M_{t} N_{t}\right)$ is in L^{1} and it makes sense to consider its Doob-Meyer decomposition:
We have

$$
\begin{aligned}
& M_{t} N_{t}-M_{t-1} N_{t-1}=M_{t-1} \Delta N_{t}+N_{t-1} \Delta M_{t}+\Delta M_{t} \Delta N_{t}= \\
& M_{t-1} \Delta N_{t}+N_{t-1} \Delta M_{t}+\left(\Delta M_{t} \Delta N_{t}-E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathcal{F}_{t-1}\right)\right)+E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathscr{F}_{t-1}\right)
\end{aligned}
$$

We introduce the predictable process

$$
\langle M, N\rangle_{t}:=\sum_{s=1}^{t} E_{P}\left(\Delta M_{s} \Delta N_{s} \mid \mathscr{F}_{s-1}\right)
$$

We obtain the Doob-Meyer decomposition

$$
M_{t} N_{t}=M_{0} N_{0}+\langle M, N\rangle_{t}+m_{t}
$$

where $d m_{t}$ the sum the martingale increments

$$
d m_{t}=M_{t-1} \Delta N_{t}+N_{t-1} \Delta M_{t}+\left(\Delta M_{t} \Delta N_{t}-E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathcal{F}_{t-1}\right)\right)
$$

where the integrability conditions in the definition of martingale follow from Cauchy-Schwartz inequality since we have assumed M and N are squareintegrable.
We denote also

$$
[M, N]_{t}:=\sum_{s=1}^{t} \Delta M_{s} \Delta N_{s}
$$

it follows that the process $\left([M, N]_{t}-\langle M, N\rangle_{t}\right)$ is a $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-martingale.
$[M, N]_{t}$ is called quadratic covariation or square-bracket process, while $\langle M, N\rangle_{t}$ is called predictable covariation, or predictable-bracket process.
Since $E\left(\left(\Delta M_{t}\right)_{P} \mid \mathscr{F}_{t-1}\right) \geq 0$, the process $\left([M, M]_{t}\right)$ is a submartingale and therefore $\left(\langle M, M\rangle_{t}\right)$ is non-decreasing. The notations $[M]_{t}:=[M, M]_{t}$ and $\langle M\rangle_{t}:=\langle M, M\rangle_{t}$ are also used.
Note $[M, N]_{t}$ does not depend on the measure P, but the predictable bracket $\langle M, N\rangle_{t}$ does !

Definition 5. Two square integrable martingales $\left(M_{t}\right),\left(N_{t}\right)$ are orthogonal if the product $\left(M_{t} N_{t}\right)$ is a martingale. Equivalent conditions are i) $[M, N]_{t}$ is a martingale,
ii) $\langle M, N\rangle_{t}=0$, which means $E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathcal{F}_{t-1}\right)(\omega)=0$ P a.s.

Note that this definition extends to the case when M_{t} is a martingale (not necessarly square integrable) and N_{t} is a martingale in $L^{\infty}(P) \forall t$.
Note also that
$\Delta\langle M\rangle_{t}:=E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)(\omega)<\infty$ and $E_{P}(\Delta\rangle M_{t}\langle)<\infty \Longleftrightarrow E_{P}\left(\Delta M_{t}^{2}\right)$
It is possible that $\Delta\langle M\rangle_{t}<\infty(P=1)$ but $E_{P}\left(\Delta M_{t}^{2}\right)=\infty\left(M_{t}\right.$ is not integrable). In such case we can still use the notion of predictable covariation and orthogonality of martingales.

3. Orthogonal projections in the space of square integrable MARTINGALES

Let M and N two square integrable martingales,
We write

$$
\begin{equation*}
N_{t}=N_{0}+(H \cdot M)_{t}+N_{t}^{\perp}=N_{0}+\sum_{s=1}^{t} H_{s} \Delta M_{s}+N_{t}^{\perp} \tag{3.1}
\end{equation*}
$$

where $\left(H_{t}\right)$ is the predictable process
$H_{t}=\mathbf{1}\left(\Delta\langle M, M\rangle_{t}>0\right) \frac{\Delta\langle M, N\rangle_{t}}{\Delta\langle M, M\rangle_{t}}=\mathbf{1}\left(E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)>0\right) \frac{E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathscr{F}_{t-1}\right)}{E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)}$
and N_{t}^{\perp} is a P-martingale orthogonal to M_{t}.
Note first that since the conditional expectation is a positive operator,

$$
E_{P}\left(\Delta M_{t}^{2} \mid \mathcal{F}_{t-1}\right)(\omega) \geq 0
$$

and therefore

$$
E_{P}\left(\Delta M_{t}^{2} \mid \mathcal{F}_{t-1}\right)(\omega)=0
$$

if and only if

$$
P\left(\Delta M_{t}^{2}=0 \mid \mathcal{F}_{t-1}\right)(\omega)=1
$$

otherwise for some $\varepsilon>0$

$$
P\left(\Delta M_{t}^{2}>\varepsilon \mid \mathcal{F}_{t-1}\right)(\omega)>\eta>0
$$

which is in contradiction with

$$
E_{P}\left(\Delta M_{t}^{2} \mid \mathcal{F}_{t-1}\right)(\omega)=0
$$

This implies

$$
E_{P}\left(\Delta N_{t} \Delta M_{t} \mid \mathscr{F}_{t-1}\right)(\omega)=0
$$

Note also that $H_{t} \in L^{2}\left(\Omega, \mathcal{F}_{t-1} P\right)$, since

$$
E_{P}\left(H_{t}\right)=E_{P}\left(\left\{\frac{E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathcal{F}_{t-1}\right)}{E_{P}\left(\left\{\Delta M_{t}\right\}^{2} \mid \mathcal{F}_{t-1}\right)}\right\}^{2}\right) \leq E_{P}\left(\Delta N_{t}^{2}\right)<\infty
$$

where we used the Cauchy-Schwartz inequality for the conditional expectation together with the properties of the conditional expectation.

$$
\left\{E_{P}\left(\Delta M_{t} \Delta N_{t} \mid \mathcal{F}_{t-1}\right)(\omega)\right\}^{2} \leq E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)(\omega) E_{P}\left(\left(\Delta N_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)(\omega)
$$

4. Martingale property and change of measure

Theorem 4.1. Let $Q \ll P$ and let

$$
Z_{t}(\omega)=Z_{t}(Q, P)=\frac{d Q_{t}}{d P_{t}}(\omega)
$$

Then M_{t} is a $\left(Q,\left\{\mathcal{F}_{t}\right\}\right)$-martingale if and only if the product $\left(M_{t} Z_{t}\right)$ is a $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$-martingale.
Proof for $s \leq t$, let $A \in \mathcal{F}_{s}$.

$$
E_{Q}\left(1_{A}\left(M_{t}-M_{s}\right)\right)=E_{P}\left(1_{A} Z_{t}\left(M_{t}-M_{s}\right)\right)=E_{P}\left(1_{A}\left(Z_{t} M_{t}-Z_{s} M_{s}\right)\right)
$$

where we use the properties of the conditional expectation. By definition of conditional expectation it means that

$$
E_{Q}\left(M_{t} \mid \mathfrak{F}_{s}\right)=M_{s} \text { if and only if } E_{P}\left(Z_{t} M_{t} \mid \mathscr{F}_{s}\right)=Z_{s} M_{s}
$$

5. Doob decomposition and change of measure

Suppose that M is a $\left(P, \mathcal{F}_{t}\right)$ martingale with $M_{0}=0$ and $\Delta M_{t}>-1$.

$$
Z_{t}=\mathcal{E}(M)_{t}:=\prod_{s=1}^{t}\left(1+\Delta M_{t}\right)=\left(1+\sum_{s=1}^{t} Z_{s-1} \Delta M_{s}\right)>0
$$

and we define on each \mathcal{F}_{t} consistently a measure

$$
Q_{t}(d \omega)=Z_{t}(\omega) P_{t}(d \omega)
$$

If $\left(Z_{t}\right)_{t=0,1, \ldots, T}$ is integrable, then $\left(Z_{t}\right)$ is a P-martingale and $Q_{t}(\Omega)=$ $E_{P}\left(Z_{t}\right)=Z_{0}=1$ which is a probability measure.

Example 3. Assume that $\left\{\xi_{t}(\omega): t=1, \ldots, T\right\}$ are i.i.d. $\mathcal{N}(0,1)$ distributed (univariate gaussian with 0 mean and variance 1).
For a given $\theta \in \mathbb{R}$ Define

$$
M_{t}(\theta)=\sum_{s=1}^{t}\left\{\exp \left(\theta \xi_{s}-\frac{1}{2} \theta^{2}\right)-1\right\}
$$

This is a martingale with independent increments, and $\Delta M_{t}>-1$.
Then we set $Z_{0}(\theta)=1$ and

$$
\begin{aligned}
& Z_{t}(\theta)=\mathcal{E}(M(\theta))_{t}=1+\sum_{s=1}^{t} Z_{s-1}(\theta) \Delta M_{s}=\prod_{s=1}^{t}\left(1+\exp \left(\theta \xi_{s}-\frac{1}{2} \theta^{2}\right)-1\right)= \\
& \prod_{s=1}^{t} \exp \left(\theta \xi_{s}-\frac{1}{2} \theta^{2}\right)=\exp \left(\theta \sum_{s=1}^{t} \xi_{s}-\frac{1}{2} \theta^{2} t\right)
\end{aligned}
$$

It follows that $Z_{t}(\theta)$ is integrable, since under P, the r.v. $\left(\sum_{s=1}^{t} \xi_{s}\right)$ is gaussian $\mathcal{N}(0, t)$. Since integrability is satisfied, $Z_{t}(\theta)$ is a P - martingale, which defines a probability measure $d Q_{t}(\theta)=Z_{t}(\theta) d P_{t}$ on \mathcal{F}_{t}.
For example for $N_{t}=\sum_{s=1}^{t} \xi_{t}$, the martingale decomposition under $Q(\theta)$ is given by

$$
\begin{aligned}
& \Delta N_{t}=\left(\Delta N_{t}-\Delta\langle N, M(\theta)\rangle_{t}\right)+\Delta\langle N, M(\theta)\rangle_{t} \\
& \left\{\xi_{t}-E_{P}\left(\xi_{t} \exp \left(\theta \xi_{t}-\frac{1}{2} \theta^{2}\right)\right)\right\}+E_{P}\left(\xi_{t} \exp \left(\theta \xi_{t}-\frac{1}{2} \theta^{2}\right)\right)=\left\{\xi_{t}-\theta\right\}+\theta
\end{aligned}
$$

meaning that $\left(N_{t}-\theta t\right)$ is a $Q(\theta)$-martingale.
Here

$$
E_{P}\left(\xi_{t} \exp \left(\theta \xi_{t}-\frac{1}{2} \theta^{2}\right)\right)=\frac{\partial}{\partial \theta} \log E_{P}\left(\exp \left(\theta \xi_{t}\right)\right)=\theta
$$

Assume that M and N are square integrable P martingales, $\Delta M_{t} \geq-1$ and $Z_{t}=\mathcal{E}(M)_{t}, t=1, \ldots, T$ with $Z_{T} \in L^{1}(P)$ for all t.
By projecting N on M obtaining the orthogonal martingale decomposition

$$
N_{t}=N_{0}+(H \cdot M)_{t}+N_{t}^{\perp}
$$

What happens to the martingale property of N and M under the new measure?

Proposition 5.1. (Girsanov theorem in discrete time) The Doob decomposition of N under Q is given by

$$
N_{t}=N_{0}+(H \cdot\langle M, M\rangle)_{t}+(H \cdot(M-\langle M, M\rangle))_{t}+N_{t}^{\perp}
$$

where $(M-\langle M, M\rangle)_{t}$ is a Q-martingale and N^{\perp} is a martingale under both P and Q, and $(H \cdot\langle M, M\rangle)_{t}$ is a predictable process.

Proof From Bayes' formula of change of measure in conditional expectation,

$$
\begin{aligned}
& E_{Q}\left(\Delta M_{t} \mid \mathcal{F}_{t-1}\right)=\frac{E_{P}\left(Z_{t} \Delta M_{t} \mid \mathcal{F}_{t-1}\right)}{E_{P}\left(Z_{t} \mid \mathcal{F}_{t-1}\right)}=E_{P}\left(\left.\Delta M_{t} \frac{Z_{t}}{Z_{t-1}} \right\rvert\, \mathcal{F}_{t-1}\right)= \\
& E_{P}\left(\left.\Delta M_{t}\left(1+\frac{\Delta Z_{t}}{Z_{t-1}}\right) \right\rvert\, \mathcal{F}_{t-1}\right)=E_{P}\left(\Delta M_{t} \mid \mathcal{F}_{t-1}\right)+E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)=0+\Delta\langle M, M\rangle_{t}
\end{aligned}
$$

which means that $\left(M_{t}-\langle M, M\rangle_{t}\right)$ is a Q-martingale.

On the other hand

$$
E_{Q}\left(\Delta N_{t}^{\perp} \mid \mathcal{F}_{t-1}\right)=E_{P}\left(\Delta N_{t}^{\perp} \Delta M_{t} \mid \mathcal{F}_{t-1}\right)=\Delta\left\langle N^{\perp}, M\right\rangle_{t}=0
$$

since N^{\perp} and M are orthogonal martingales.
In example 3, we compute $\langle M(\theta), M(\theta)\rangle$, and find the law of $\left(\xi_{s}\right)$ under the probability measure $Q_{T}(\theta)$.
Recall that the characteristic function of the gaussian distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is

$$
\varphi_{X}(u):=E_{\mu, \sigma^{2}}(\exp (i u X))=\exp \left(i u \mu-\frac{1}{2} u^{2} \sigma^{2}\right)
$$

where $X(\omega)$ is $\mathcal{N}\left(\mu, \sigma^{2}\right)$-distributed and i is the imaginary unit.
Now we want to compute the characteristic function of the vector ξ_{1}, \ldots, ξ_{t} under the measure Q.
We have that for $u=\left(u_{1}, \ldots, u_{t}\right) \in \mathbb{R}^{t}$

$$
\begin{aligned}
& E_{Q}\left(\exp \left(i \sum_{s=1}^{t} u_{s} \xi_{s}\right)\right)=E_{P}\left(Z_{t} \exp \left(i \sum_{s=1}^{t} u_{s} \xi_{s}\right)\right)= \\
& E_{P}\left(\exp \left(\sum_{s=1}^{t}\left(i u_{s}+\theta\right) \xi_{s}-\frac{1}{2} \theta^{2} t\right)\right)= \\
& E_{P}\left(\exp \left(\sum_{s=1}^{t} i\left(u_{s}-i \theta\right) \xi_{s}+\frac{1}{2} \sum_{s=1}^{t}\left(u_{s}-i \theta\right)^{2}\right)\right) \exp \left(\frac{1}{2} \sum_{s=1}^{t}\left\{-\left(u_{s}-i \theta\right)^{2}-\theta^{2}\right\}\right)= \\
& \prod_{s=1}^{t} E_{P}\left(\exp \left(\left(u_{s}-i \theta\right) \xi_{s}+\frac{1}{2}\left(u_{s}-i \theta\right)^{2}\right)\right) \prod_{s=1}^{t} \exp \left(i \theta u_{s}-\frac{1}{2} u_{s}^{2}\right) \\
& =1 \times E_{P}\left(\exp \left(i\left(\theta+\xi_{s}\right) u_{s}\right)\right.
\end{aligned}
$$

this means that the law under Q of ξ_{s} is the same as the law under P of $\left(\theta+\xi_{s}\right)$, i.e. under $Q\left(\xi_{s}: s=1, \ldots, t\right)$ are i.i.d. $\mathcal{N}(\theta, 1)$.

6. Martingale predictable representation property

Let M be a P-martingale w.r.t. to a discrete time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{N}\right\}$.
We say that M has the martingale representation property in the filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}$, if any other bounded (P, \mathbb{F})-martingale $\left(X_{t}\right)$ can be represented as a constant plus a martingale transform w.r.t. M

$$
X_{t}=X_{0}+(Y \cdot M)_{t}=X_{0}+\sum_{s=1}^{t} Y_{s} \Delta M_{s}
$$

where $\left(Y_{t}\right)$ is \mathbb{F}-predictable, that is Y_{t} is \mathcal{F}_{t-1}-measurable for all t.
Since X is a bounded martingale, also $\Delta M_{s}(\omega)$ conditionally bounded given \mathcal{F}_{s-1} is bounded on the set $\left\{\omega: Y_{s}(\omega) \neq 0\right\}$,

$$
\Delta M_{t}(\omega) \leq\left\|\Delta X_{t}\right\|_{L^{\infty}(P)}\left|Y_{t}(\omega)\right|^{-1}
$$

Therefore the M_{t} is locally bounded, where a localizing sequence is given for example by

$$
\tau_{n}:=\inf \left\{t:\left\|\Delta X_{t+1}\right\|_{L^{\infty}(P)}\left|Y_{t+1}(\omega)\right|^{-1}>n\right\}
$$

which is a stopping time since $\left\{\tau_{n} \leq t\right\} \in \mathcal{F}_{t}$.
Note that this notation covers also the case of d-dimensional martingales. In such case $\left(Y_{s}\right)$ is a d-dimensional predictable process, and

$$
\sum_{s=1}^{t} Y_{s} \Delta M_{s}=\sum_{s=1}^{t} \sum_{i=1}^{d} Y_{s}^{(i)} \Delta M_{s}(i)
$$

Lemma 6.1. Let $\left(M_{t}\right)$ be a ($\left.P, \mathbb{F}\right)$-martingale.
$\left(M_{t}\right)$ has the predictable representation property in the (\mathbb{F})-filtration if and only if
the only bounded (P, \mathbb{F})-martingales $\left(N_{t}\right)$ such that the product $\left(M_{t} N_{t}\right)$ is a (P, \mathbb{F})-martingale are constant.

Proof Assume that the PRP holds for M. Then every bounded martingale N has the form $N_{t}=(H \cdot M)_{t}$. If N is such that $\left(N_{t} M_{t}\right)$ is a martingale, necessarly

$$
\begin{aligned}
& \Delta\left(M_{t} N_{t}\right)=M_{t-1} \Delta N_{t}+N_{t-1} \Delta M_{t}+\Delta M_{t} \Delta N_{t}= \\
& \left(M_{t-1} H_{t}+N_{t-1}\right) \Delta M_{t}+H_{t}\left(\Delta M_{t}\right)^{2}
\end{aligned}
$$

This gives a contradiction, since

$$
0=E\left(\Delta\left(M_{t} N_{t}\right) \mid \mathcal{F}_{t-1}\right)=H_{t} E\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right) \neq 0
$$

with positive probability unless either $\Delta M_{t}=0$ or $H_{t}=0$. This implies that N_{t} is constant. The same argument gives the opposite implication.

Theorem 6.1. In the discrete time setting, M has the martingale representation property in the filtration \mathbb{F} if and only if there are no other martingale measures $Q \sim P$ with bounded density for $\left(M_{t}\right)$, that is if $Q \sim P$, $Z(\omega)=\frac{d P}{d Q}(\omega)$ is essentially bounded and $\left(M_{t}\right)$ is a also $a(Q, \mathbb{F})$-martingale, necessarly $Q=P$.

Proof For simplicity we set $\mathcal{F}_{0}=\{\Omega, \emptyset\}$. Assume that $Q \sim P$. We know that $Z_{t}=Z_{t}(Q, P)$ is a (P, \mathbb{F})-martingale.
By the predictable representation property,

$$
\Delta Z_{t}=Z_{t-1} H_{t} \Delta M_{t}
$$

where H_{t} is \mathcal{F}_{t-1}-measurable.
We show that M is not a martingale under Q, unless $H_{t}=0$.

$$
\begin{aligned}
& E_{Q}\left(\Delta M_{t} \mid \mathcal{F}_{t-1}\right)=E_{P}\left(\left.\Delta M_{t} \frac{Z_{t}}{Z_{t-1}} \right\rvert\, \mathcal{F}_{t-1}\right)=E_{P}\left(\left.\Delta M_{t}\left(1+\frac{\Delta Z_{t}}{Z_{t-1}}\right) \right\rvert\, \mathcal{F}_{t-1}\right)= \\
& E_{P}\left(\Delta M_{t}\left(1+H_{t} \Delta M_{t}\right) \mid \mathcal{F}_{t-1}\right)=E_{P}\left(\Delta M_{t} \mid \mathcal{F}_{t-1}\right)+E_{P}\left(H_{t}\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right)= \\
& 0+H_{t} E_{P}\left(\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right) \neq 0
\end{aligned}
$$

unless $H_{t}=0$-a.s. for all t. This means that $Z_{t}=1$ for all t and $Q=P$.
Viceversa, suppose that the representation property does not hold for M in the filtration \mathbb{F}.
This means that there is some other bounded (P, \mathbb{F})-martingale N such that the product $\left(M_{t} N_{t}\right)$ is a martingale. We can take N satisfying $N_{0}=0$ and
$\left|N_{t}\right| \leq 1$. It is a fact from martingale theory that a bounded martingale $\left(N_{t}\right)$ has almost surely a limit.
Define the measure on \mathcal{F}_{t}

$$
d Q_{t}=\left(1+\frac{N_{t}}{2}\right) d P_{t}=Z_{t}(\omega) d P_{t}
$$

Note that $\left(Z_{t}\right)$ is a P-martingale with $0<\frac{1}{2} \leq Z_{t}(\omega) \leq 3 / 2$ and $Z_{0}=1$, so that Q_{t} is a probabilty measure equivalent to P_{t} on \mathcal{F}_{t}.
We have that

$$
M_{t} Z_{t}=M_{t}+\frac{\left(N_{t} M_{t}\right)}{2}
$$

is a P-martingale since $\left(M_{t}\right)$ and $\left(N_{t} M_{t}\right)$ are P-martingales. This means we have constructed another measure $Q_{t} \sim P_{t}$, with $Q_{t} \neq P_{t}$ such that $\left(M_{t}\right)$ is a Q-martingale.

Example 4. Consider a sequence of i.i.d. standard normal random variables $\left(\xi_{t}\right)$ on the probability space (Ω, \mathcal{F}, P). with the filtration of σ algebrae $\mathcal{F}_{t}=\sigma\left(\xi_{s}: 1 \leq s \leq t\right)$.
Define $M_{t}=\sum_{s=1}^{t} \xi_{s} . M_{t}$ is a P-martingale, since it has independent increments and centered. M_{t} is also square integrable, since the increments are gaussian. Note that $\mathcal{F}_{t}=\sigma\left(M_{s}: 1 \leq s \leq t\right)$.
Note that $\eta_{t}=\left(\xi_{t}^{2}-1\right)$ are also i.i.d. and centered, and $N_{t}=\sum_{s=1}^{t} \eta_{s}$ is also a P-martingale.
It follows that the product $\left(N_{t} M_{t}\right)$ is a P-martingale,m since $E_{P}\left(\xi_{t} \eta_{t}\right)=$ $E_{P}\left(\xi_{t}^{3}-\xi_{t}\right)=0$.
The filtration $\left\{\mathcal{F}_{t}\right\}$ generated by $\left(M_{t}\right)$ contains the P-martingale $\left(N_{t}\right)$ which is is orthogonal to $\left(M_{t}\right)$. Neither M or N have the predictable representation property.
We show that there exist an equivalent martingale measure for M. Note that $\Delta N_{t}=\left(\xi_{t}^{2}-1\right)>-1 P$-almost surely.
Therefore

$$
Z_{t}=\prod_{s=1}^{t}\left(1+\Delta N_{t}\right)=1+\sum_{s=1}^{t} Z_{s-1} \Delta N_{s}>0
$$

defines an equivalent probability measure $d Q_{t}=Z_{t} d P_{t}$.
By Girsanov theorem, since $\left(M_{t} N_{t}\right)$ is a P-martingale it follows that also $\left(M_{t} Z_{t}\right)$ is a P-martingale. But this means that $\left(M_{t}\right)$ is a Q-martingale. So $Q \sim P$ but $Q \neq P$ is another martingale measure for P.
In order to construct a bounded $\left(P,\left\{\mathcal{F}_{t}\right\}\right)$ - martingale we can take the i.i.d. sequence of centered and bounded random variables

$$
\varepsilon_{t}:=\left(\xi_{t}^{2} \wedge 1\right)-E_{P}\left(\xi_{t}^{2} \wedge 1\right) \in(-1,1)
$$

It follows that

$$
\begin{aligned}
& E_{P}\left(\xi_{t} \varepsilon_{t}\right)=E_{P}\left(\xi_{t}\left(\xi_{t}^{2} \wedge 1\right)\right)-E_{P}\left(\xi_{t}\right) E_{P}\left(\xi_{t}^{2} \wedge 1\right)= \\
& E_{P}\left(\xi_{t} \mathbf{1}\left(\left|\xi_{t}\right|>1\right)\right)+E_{P}\left(\xi_{t}^{3} \mathbf{1}\left(\left|\xi_{t}\right| \leq 1\right)\right)+0=0
\end{aligned}
$$

since the distribution ξ_{t} is symmetric around 0 .
Therefore for any fixed T, the process stopped at T

$$
X_{t}^{T}:=\sum_{s=1}^{t \wedge T} \varepsilon_{s}
$$

is a bounded P-martingale orthogonal to $\left(M_{t}\right)$.

7. Application to Hedging

Consider the finite probability space (Ω, \mathcal{F}, P) where $\Omega=\{0,1\}^{T}$, with $T<$ ∞, and $\mathcal{F}=2^{\Omega}$, the finite collection of all possible subset, and probability measure satisfies $P(\{\omega\})>0$ for all $\omega \in \Omega$.
An history is a vector $\omega=\left(\omega_{1}, \ldots, \omega_{T}\right) \in \Omega$ and denote $\omega^{t}=\left(\omega_{1}, \ldots, \omega_{t}\right)$ for $t \leq T$.
Consider a market with a bank account B_{t} and a stock price $S_{t}, t=$ $0,1, \ldots, T$, adapted to the filtration \mathbb{F} with $\mathcal{F}_{t}=\sigma\left(\omega_{s}, s \leq t\right), \mathcal{F}_{0}=\{\Omega, \emptyset\}$ We assume that there are $\left\{\mathcal{F}_{t}\right\}$-predictable processes $U_{t}(\omega)>R_{t}(\omega)>$ $D_{t}(\omega)>-1 . B_{0}>0$ and $S_{0}>0$ are determistic values, and we let

$$
\begin{aligned}
B_{t} & =B_{0} \prod_{s=1}^{t}\left(1+R_{t}\right) \\
S_{t} & =S_{0} \prod_{s=1}^{t}\left(1+D_{t}+\omega_{t}\left(U_{t}-D_{t}\right)\right)
\end{aligned}
$$

Suppose that $G(\omega)$ is a \mathcal{F}_{t}-measurable contingent claim, and we want to find a self-financing hedging strategy $\left(\beta_{t}, \gamma_{t}\right)$ satisfying

$$
V_{t}=\beta_{t} B_{t}+\gamma_{t} S_{t}=\beta_{t+1} B_{t}+\gamma_{t+1} S_{t}
$$

Let $\bar{G}(\omega)=G(\omega) / B_{T}(\omega)$ the discounted contingent claim.
We show first that there is an unique probability measure Q such that $Q \sim P$ and the discounted process $\bar{S}_{t}:=\left(S_{t} / B_{t}\right)$ is a Q-martingale.
Once we have shown that Q is the unique martingale measure for $\left(\bar{S}_{t}\right)$ in the filtration \mathbb{F}, it follows that every (Q, \mathbb{F}) martingale $\left(N_{t}\right)$ has the representation as

$$
N_{t}=N_{0}+\sum_{u=1}^{t} H_{u} \Delta \bar{S}_{u}
$$

where $\left(H_{t}\right)$ is a \mathbb{F}-predictable process. In particular we can take $N_{t}=$ $E_{Q}\left(\bar{G} \mid \mathcal{F}_{t}\right)$, and obtain when $t=T$

$$
\bar{G}(\omega)=\frac{G(\omega)}{B_{T}(\omega)}=E_{Q}\left(\bar{G} \mid \mathcal{F}_{T}\right)=E_{Q}(\bar{G})+\sum_{t=1}^{T} \gamma_{t} \Delta \bar{S}_{t}
$$

where $\left(\gamma_{t}\right)$ is a \mathbb{F}-predictable process.

This gives the unique price $c(G)=E_{Q}(\bar{G}) B_{0}$ and the hedging strategy for the contingent claim G.

Lets' first compute the martingale measure Q.

$$
\begin{aligned}
& \Delta \bar{S}_{t}=\left(\frac{S_{t}}{B_{t}}-\frac{S_{t-1}}{B_{t-1}}\right)=\frac{S_{t-1}}{B_{t-1}}\left(\frac{\left(1+D_{t}+\left(U_{t}-D_{t}\right) \omega_{t}\right)}{\left(1+R_{t}\right)}-1\right)= \\
& \frac{S_{t-1}}{B_{t-1}\left(1+R_{t}\right)}\left(\left(U_{t}-D_{t}\right) \omega_{t}-\left(D_{t}-R_{t}\right)\right)
\end{aligned}
$$

Taking conditional expectation with respect to a measure Q, and imposing the martingale property

$$
E_{Q}\left(\Delta \bar{S}_{t} \mid \mathcal{F}_{t-1}\right)=\frac{S_{t-1}}{B_{t-1}\left(1+R_{t}\right)}\left(\left(U_{t}-D_{t}\right) E_{Q}\left(\omega_{t} \mid \mathcal{F}_{t-1}\right)-\left(D_{t}-R_{t}\right)\right)=0
$$

which implies that Q is a martingale measure for $\left(\bar{S}_{t}\right)$ if and only if

$$
q_{t}\left(\omega^{t-1}\right):=E_{Q}\left(\omega_{t} \mid \mathcal{F}_{t-1}\right)=\frac{\left(R_{t}-D_{t}\right)}{\left(U_{t}-D_{t}\right)}
$$

where $q_{t}\left(\omega^{t-1}\right) \in(0,1)$ is a probability since we have assumed that $D_{t}<$ $R_{t}<U_{t}, P$ a.s, and it is uniquely determined. We define globally the unique risk-neutral measure Q as follows:

$$
Q(\omega)=\prod_{t=1}^{T} q_{t}\left(\omega^{t-1}\right)^{\omega_{t}}\left(1-q_{t}\left(\omega^{t-1}\right)\right)^{1-\omega_{t}}
$$

and note that $Q(\{\omega\})>0$ for all $\omega \in \Omega$, therefore $Q \sim P$.
We define the basic Q-martingale

$$
M_{t}=\sum_{s=1}^{t}\left(\omega_{s}-q_{s}\left(\omega^{(s-1)}\right)\right)
$$

We write
$\Delta \bar{S}_{t}=\frac{S_{t-1}}{B_{t-1}\left(1+R_{t}\right)}\left(U_{t}-D_{t}\right)\left(\omega_{t}-q_{t}\left(\omega^{(t-1)}\right)\right)=\frac{S_{t-1}}{B_{t-1}\left(1+R_{t}\right)}\left(U_{t}-D_{t}\right) \Delta M_{t}$ and we can represent ΔM_{t} in terms of $\Delta \bar{S}_{t}$:

$$
\Delta M_{t}=\frac{B_{t-1}\left(1+R_{t}\right)}{S_{t-1}\left(U_{t}-D_{t}\right)} \Delta \bar{S}_{t}
$$

Next we show how to use the martingale representation to compute the hedging strategy for the contingent claim G.

Definition 6. If $X(\omega)$ is a \mathcal{F}_{T}-measurable random variable, we define its discrete Malliavin derivative or stochastic gradient at time t w.r.t ω_{t} as
$\nabla_{t} X(\omega):=X\left(\omega_{1}, \ldots, \omega_{t-1}, 1, \omega_{t+1}, \ldots \omega_{T}\right)-X\left(\omega_{1}, \ldots, \omega_{t-1}, 0, \omega_{t+1}, \ldots \omega_{T}\right)$,
for $1 \leq t \leq T$.
Note that in general $\nabla_{t} X(\omega)$ is not \mathcal{F}_{t} measurable unless the r.v. $X(\omega)=$ $X\left(\omega^{t}\right)$ is \mathcal{F}_{t}-measurable. In such case $\nabla_{t} X(\omega)$ is also \mathcal{F}_{t-1}-measurable.

In particular the following quantities are \mathcal{F}_{T-1}-measurable.

$$
\begin{aligned}
& \nabla_{T} G\left(\omega^{T-1}\right)=\left(G\left(\omega^{T-1}, 1\right)+G\left(\omega^{T-1}, 0\right)\right) \\
& \nabla_{T} \bar{G}\left(\omega^{T-1}\right)=\left(\bar{G}\left(\omega^{T-1}, 1\right)+\bar{G}\left(\omega^{T-1}, 0\right)\right)=\frac{1}{B_{T}(\omega)}\left(G\left(\omega^{T-1}, 1\right)+G\left(\omega^{T-1}, 0\right)\right) \\
& =\frac{\nabla_{T} G\left(\omega^{T-1}\right)}{B_{T}(\omega)} \quad \text { since } B_{T}(\omega) \text { is } \mathcal{F}_{T-1} \text {-measurable, }
\end{aligned}
$$

and

$$
\begin{aligned}
& \nabla_{T} S_{T}\left(\omega^{T-1}\right)=\left(S_{T}\left(\omega^{T-1}, 1\right)+S_{T}\left(\omega^{T-1}, 0\right)\right)=S_{T-1}\left(U_{T}\left(\omega^{T-1}\right)-D_{T}\left(\omega^{T-1}\right)\right) \\
& \nabla_{T} \bar{S}_{T}\left(\omega^{T-1}\right)=\frac{1}{B_{T}} \nabla_{T} \bar{S}_{T}\left(\omega^{T-1}\right)
\end{aligned}
$$

Note also that

$$
\Delta \bar{S}_{T}=\left(\bar{S}_{T}-\bar{S}_{T-1}\right)=\frac{S_{T-1}}{B_{T}}\left(U_{T}-D_{T}\right)\left(\omega_{T}-q_{T}\right)=\nabla_{T} \bar{S}_{T}\left(\omega_{T}-q_{T}\right)
$$

so that we can write

$$
\Delta M_{T}=\left(\omega_{T}-q_{T}\left(\omega^{T-1}\right)\right)=\frac{1}{\nabla_{T} \bar{S}_{T}} \Delta \bar{S}_{T}=\frac{B_{T}}{\nabla_{T} S_{T}} \Delta \bar{S}_{T}
$$

We have

$$
\begin{aligned}
& \bar{G}(\omega)=\bar{G}\left(\omega^{T-1}, \omega_{T}\right)=\bar{G}\left(\omega^{T-1}, 0\right)+\left(\bar{G}\left(\omega^{T-1}, 1\right)-\bar{G}\left(\omega^{T-1}, 0\right)\right) \omega_{T}= \\
& \bar{G}\left(\omega^{T-1}, 0\right)+\nabla_{T} \bar{G}\left(\omega^{T-1}\right) \omega_{T}= \\
& \bar{G}\left(\omega^{T-1}, 0\right)+\nabla_{T} \bar{G}\left(\omega^{T-1}\right) q_{T}+\nabla_{T} \bar{G}\left(\omega^{T-1}\right)\left(\omega_{T}-q_{T}\right)= \\
& E_{Q}\left(\bar{G} \mid \mathfrak{F}_{T-1}\right)+\nabla_{T} \bar{G} \Delta M_{T}=E_{Q}\left(\bar{G} \mid \mathfrak{F}_{T-1}\right)+\frac{\nabla_{T} \bar{G}}{\nabla_{T} S_{T}} B_{T} \Delta \bar{S}_{T} \\
& =E_{Q}\left(\bar{G} \mid \mathcal{F}_{T-1}\right)+\frac{\nabla_{T} G}{\nabla_{T} S_{T}} \Delta S_{T}-\frac{\nabla_{T} G}{\nabla_{T} S_{T}} R_{T} S_{T-1} \\
& =E_{Q}\left(\bar{G} \mid \mathfrak{F}_{T-1}\right)+\frac{\nabla_{T} G}{\nabla_{T} S_{T}} \Delta S_{T}-\frac{\nabla_{T} G}{\nabla_{T} S_{T}} \frac{S_{T-1}}{B_{T-1}} \Delta B_{t}
\end{aligned}
$$

By investing at time ($T-1$) the (random) value

$$
c_{T-1}(G)=E_{Q}\left(\bar{G} \left\lvert\, \mathcal{F}_{T-1}(\omega) B_{T-1}(\omega)=\frac{E_{Q}\left(G \mid \mathcal{F}_{T-1}\right)(\omega)}{1+R_{T}}\right.\right.
$$

we replicate the contingent claim G as follows: we buy the amount of stocks

$$
\gamma_{T}=\frac{\nabla_{T} G}{\nabla_{T} S_{T}}
$$

at price $\gamma_{T} S_{T-1}$ (if $\gamma_{T}<0$ we short-sell stocks), if necessary by borrowing from the bank at the predictable interest rate R_{T}, and buy the amount of

$$
\beta_{T}=\frac{1}{B_{T-1}}\left(c_{T-1}(G)-\gamma_{T} S_{T-1}\right)
$$

bonds at price B_{T-1}, so that our capital is

$$
V_{T-1}=c_{T-1}(G)=\beta_{T} B_{T-1}+\gamma_{T} S_{T-1}
$$

At time $(T-1)$ the value of our portfolio is

$$
V_{T-1}=\beta_{T} B_{T-1}+\gamma_{T} S_{T-1}=c_{T-1}(G)
$$

while at time T the value of the portfolio becomes

$$
\begin{aligned}
& V_{T}=\beta_{T} B_{T}+\gamma_{T} S_{T}=\beta_{T} B_{T-1}\left(1+R_{T}\right)+\gamma_{T} S_{T-1}+\gamma_{T} \Delta S_{T} \\
& =E_{Q}\left(G \mid \mathfrak{F}_{T-1}\right)-\gamma_{T} S_{T-1}\left(1+R_{T}\right)+\gamma_{T} S_{T-1}+\gamma_{T} \Delta S_{T} \\
& =E_{Q}\left(G \mid \mathfrak{F}_{T-1}\right)-\gamma_{T} S_{T-1} R_{T}+\gamma_{T} \Delta S_{T}= \\
& E_{Q}\left(G \mid \mathfrak{F}_{T-1}\right)+\gamma_{T}\left(S_{T}-\left(1+R_{T}\right) S_{T-1}\right)=E_{Q}\left(G \mid \mathcal{F}_{T-1}\right)+B_{T} \gamma_{T} \Delta \bar{S}_{T}=G(\omega)
\end{aligned}
$$

Remark The martingale measure Q when it is unique gives a device to compute the price and hedging strategy. In fact the price hedging can be computed without using probability, once we have assumed that all histories $\omega \in \Omega$ have positive probability:
A direct way to compute the hedging without using martingales is to solve at time T the system of equations:

$$
\begin{aligned}
& G\left(\omega^{T-1}, 0\right)=B_{T} \beta_{T}+\gamma_{T} S_{T-1}\left(1+D_{T}\right) \\
& G\left(\omega^{T-1}, 1\right)=B_{T} \beta_{T}+\gamma_{T} S_{T-1}\left(1+U_{T}\right)
\end{aligned}
$$

By substracting these two equations we get

$$
\gamma_{T}=\frac{\nabla_{T} G\left(\omega^{T-1}\right)}{S_{T-1}\left(U_{T}-D_{T}\right)}
$$

and if the two equations with respective weights $\left(1-q_{T}\left(\omega^{T-1}\right)\right)$ corresponding to $\omega_{T}=0$ and $q_{T}\left(\omega^{T-1}\right)$ corresponding to $\omega_{T}=1$ we obtain

$$
\begin{aligned}
& \beta_{T}=\frac{1}{B_{T}}\left(E_{Q}\left(G \mid \mathfrak{F}_{T-1}\right)-\gamma_{T} E_{Q}\left(S_{T} \mid \mathcal{F}_{T-1}\right)\right) \\
& =\frac{1}{B_{T}} E_{Q}\left(G \mid \mathcal{F}_{T-1}\right)-\gamma_{T} \frac{S_{T-1}}{B_{T-1}}
\end{aligned}
$$

combining these toghether we get the price of the contingent claim at time $(T-1)$:

$$
c_{T-1}(G)=\beta_{T} B_{T-1}+\gamma_{T} S_{T-1}=\frac{1}{1+R_{T}} E_{Q}\left(G \mid \mathfrak{F}_{T-1}\right)
$$

The martingale method has the advantage that it gives a probabilistic interpretation to the price of the contingent claim, which can be computed directly as a Q-expectation.
The other reason is that the martingale method can be extended to the continuous-time setting.

The price and the hedging strategy in the whole time interval $t=1, \ldots, T$, is then obtained by induction:
Let $c_{t}(G)$ be the price of the contract G at time $t \leq T$. This is a $\mathcal{F}_{t^{-}}$ measurable contingent claim. This means that are able to hedge the contingent claim G expiring at time T if and only if at time t we own a portfolio of value $c_{t}(G)$. By repeating the martingale argument or by writing directly the system of equations we find the price of the contract at time $(t-1)$ $c_{t-1}(G)$ and the replicating portfolio $\beta_{t}\left(\omega^{t-1}\right), \gamma_{t}\left(\omega^{t-1}\right)$.
The advantage the martingale method is that enables to compute directly price and replicating strategy at all times t by computing Q-expectations. The predictable representation property of the Q-martingale M gives

Theorem 7.1. Discrete Clarck-Ocone formula:

$$
\begin{aligned}
& E_{Q}\left(\bar{G} \mid \mathcal{F}_{t}\right)(\omega)=E_{Q}(\bar{G})+\sum_{s=1}^{t} \nabla_{s} E_{Q}\left(\bar{G}(\omega) \mid \mathcal{F}_{s}\right)\left(\omega_{s}-q_{s}\left(\omega^{s-1}\right)\right) \\
& =E_{Q}(\bar{G})+\sum_{u=1}^{t} \frac{\nabla_{u} E_{Q}\left(\bar{G}(\omega) \mid \mathcal{F}_{u}\right)}{\nabla_{u} \bar{S}_{u}} \Delta \bar{S}_{u}
\end{aligned}
$$

where by definition $\nabla_{t} E_{Q}\left(\bar{G}(\omega) \mid \mathcal{F}_{t}\right)$ is $\mathcal{F}_{t-1 \text {-measurable. }}$.
We set

$$
\gamma_{t}=\frac{\nabla_{t} E_{Q}\left(G(\omega) \mid \mathcal{F}_{t}\right)}{\nabla_{t} S_{t}}
$$

This gives

$$
\begin{aligned}
& V_{t}=E_{Q}\left(G \mid \mathcal{F}_{t}\right)=E_{Q}\left(G \mid \mathcal{F}_{t-1}\right)+\gamma_{t} B_{t} \Delta \bar{S}_{t} \\
& =\frac{E_{Q}\left(G \mid \mathcal{F}_{t-1}\right)}{1+R_{t}}+\gamma_{t} \Delta S_{t}+\left(\frac{E_{Q}\left(G \mid \mathcal{F}_{t-1}\right)}{1+R_{t}}-\gamma_{t} S_{t-1}\right) \frac{1}{B_{t-1}} \Delta B_{t} \\
& =V_{t-1}+\gamma_{t} \Delta S_{t}+\beta_{t} \Delta B_{t}
\end{aligned}
$$

where

$$
\beta_{t}=\left(\frac{E_{Q}\left(G \mid \mathcal{F}_{t-1}\right)}{1+R_{t}}-\gamma_{t} S_{t-1}\right) \frac{1}{B_{t-1}}
$$

This means that to obtain a portfolio with value $E_{Q}\left(G \mid \mathcal{F}_{t}\right)$ at time t, we need to invest

$$
c_{t-1}:=E_{Q}\left(G \mid \mathcal{F}_{t-1}\right) /\left(1+R_{t}\right)
$$

at time $(t-1)$. Equivalently, to have $E_{Q}\left(\left.G \frac{B_{t}}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right)$ in our portfolio at time t we need to invest the amount

$$
E_{Q}\left(\left.G \frac{B_{t-1}}{B_{T}} \right\rvert\, \mathcal{F}_{t-1}\right) \quad \text { at time }(t-1)
$$

Inductively, to have $G=E_{Q}\left(G \mid \mathcal{F}_{T}\right)$ at time T we have to invest at time $s \leq T$ the amount

$$
c_{t}(G)=E_{Q}\left(\left.G \frac{B_{t}}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right)
$$

at time t.
The hedging at time $(t-1)$ is given by

$$
\begin{aligned}
& \gamma_{t}=\frac{\nabla_{t} E_{Q}\left(\left.G(\omega) \frac{B_{t}}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right)}{\nabla_{t} S_{t}}=\frac{\nabla_{t} c_{t}(G)}{\nabla_{t} S_{t}}, \\
& \beta_{t}=\left(c_{t-1}(G)-\gamma_{t} S_{t-1}\right) \frac{1}{B_{t-1}}
\end{aligned}
$$

giving

$$
\begin{aligned}
& V_{t}=c_{t}(G)=c_{0}(G)+\sum_{u=1}^{t}\left(\gamma_{u} \Delta B_{u}+\beta_{u} \Delta B_{u}\right) \\
& V_{T}=G=c_{0}(G)+\sum_{u=1}^{T}\left(\gamma_{u} \Delta B_{u}+\beta_{u} \Delta B_{u}\right)
\end{aligned}
$$

When R_{t} is deterministic, we can take the discounting factors B_{t} / B_{T} outside the conditional expectation.

If $\left(D_{t}, R_{t}, U_{t}\right)$ are all deterministic, then under the martingale measure Q the random variables ω_{t} is independent from the past. Then the computation of the hedging strategy may be simplified by using the following formula:

Corollary 7.1. If $\left(D_{t}, R_{t}, U_{t}\right)$ are deterministic at all $t \leq T$, conditional expectation and gradient commute in Ito-Clarck formula

$$
\nabla_{t} E_{Q}\left(G \mid \mathfrak{F}_{t}\right)=E_{Q}\left(\nabla_{t} G \mid \mathfrak{F}_{t}\right)=E_{Q}\left(\nabla_{t} G \mid \mathfrak{F}_{t-1}\right),
$$

giving

$$
E_{Q}\left(G \mid \mathfrak{F}_{t}\right)(\omega)=E_{Q}(G)+\sum_{s=1}^{t} E_{Q}\left(\nabla_{s} G \mid \mathfrak{F}_{s}\right)\left(\omega_{s}-q_{s}\left(\omega^{s-1}\right)\right)
$$

Proof When $\omega=\left(\omega_{1}, \ldots, \omega_{T}\right)$ we denote $\omega^{t, T}$ the vector $\left(\omega_{t}, \ldots, \omega_{T}\right)$.
Using the independence of the r.v. $\left(\omega_{t}\right)$,

$$
\begin{aligned}
& E_{Q}\left(\nabla_{t} G \mid \mathcal{F}_{t}\right)\left(\omega_{t}\right)=\sum_{\omega^{t+1, T} \in\{0,1\}^{T-t}}\left\{G\left(\omega^{t-1}, 1, \omega^{t+1, T}\right)-G\left(\omega^{t-1}, 0, \omega^{t+1, T}\right)\right\} Q\left(\omega^{t+1, T}\right) \\
& =\nabla_{t} E_{Q}\left(G \mid \mathfrak{F}_{t}\right)\left(\omega_{t}\right)
\end{aligned}
$$

which is \mathcal{F}_{t-1}-measurable.
Example 5. Assume that $R_{t}=r, U_{t}=u, D_{t}=d$ deterministic, with $-1<$ $d<r<u$. Then $q_{t}=q=(r-d) /(u-d)$ is constant. We have that

$$
S_{t}=S_{0}(1+u)^{N_{t}}(1+d)^{t-N_{t}}
$$

where $N_{t}=\sum_{s=1}^{t} \omega_{s}$.
Then if $G(\omega)=\varphi\left(S_{T}\right)$ is a plain european option, we compute the price at time $t=0$ using the distribution $\operatorname{Binomial}(q, T)$.

$$
\begin{aligned}
& V_{0}=c_{0}(G)=B_{0} E_{Q}\left(\varphi\left(S_{T}\right) / B_{T}\right)= \\
& (1+r)^{-T} \sum_{n=0}^{T}\binom{T}{n} q^{n}(1-q)^{T-n} \varphi\left(S_{0}(1+u)^{n}(1+d)^{T-n}\right) .
\end{aligned}
$$

Similarly since the conditional distribution of $\left(N_{T}-N_{t}\right)$ given \mathcal{F}_{t} is Binomial $(q, T-$ t), at time t the price of the replicating portfolio is

$$
\begin{aligned}
& V_{t}=c_{t}(G)=B_{t} E_{Q}\left(\varphi\left(S_{T}\right) / B_{T} \mid \mathcal{F}_{t}\right)= \\
& (1+r)^{t-T} \sum_{n=0}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n} \varphi\left(S_{0}(1+u)^{N_{t}+n}(1+d)^{T-N_{t}-n}\right)
\end{aligned}
$$

with this amount of money, we invest in γ_{t+1} stocks and invest the rest in the bank account, with

$$
\begin{aligned}
& \gamma_{t+1}=\frac{\nabla_{t+1} c_{t+1}(G)}{\nabla_{t+1} S_{t+1}}=(1+r)^{t+1-T} \frac{E_{Q}\left(\nabla_{t+1} G \mid \mathcal{F}_{t}\right)}{S_{t}(u-d)}= \\
& (1+r)^{t+1-T} \frac{1}{S_{t}(u-d)} \sum_{n=0}^{T-t-2}\left\{\binom{T-t-2}{n} q^{n}(1-q)^{T-t-2-n} \times\right. \\
& \left.\times\left(\varphi\left(S_{0}(1+u)^{N_{t}+n+1}(1+d)^{T-N_{t}-n-2}\right)-\varphi\left(S_{0}(1+u)^{N_{t}+n}(1+d)^{T-N_{t}-n-1}\right)\right)\right\}
\end{aligned}
$$

