
SOME BASIC FACTS FROM MARTINGALE THEORY

DARIO GASBARRA

1. Conditional Expectation and Martingales

Let (Ω,F, P ) be a probability space.

Definition 1. Conditional expectation: Let X be a random variable, (which
is F-measurable) and a sub σ-algebra G ⊆ F, EP (X|G) is a G-measurable
random variable such that for all B ∈ G

EP (1BX) = EP (1BEP (X|G))

Properties: i) EP (EP (X|G)) = EP (X) ,
ii) if Y is G-measurable EP (XY |G) = Y EP (X|G).
iii) if Y ⊥⊥ G, EP (Y |G) = EP (Y ).

iv) If EP (X2) <∞, the random variable EP (X|G) is the orthogonal projec-
tion of the r.v. X to the subspace L2(Ω,G, P ) ⊂ L2(Ω,F, P ):

E((X − EP (X|G))2) = min
Y ∈L2(Ω,G,P )

E((X − Y )2) .

v) the conditional expectation is linear:
EP (aX + bY |G)(ω) = aEP (X|G)(ω) + bEP (Y |G)(ω)
vi) The conditional expectaion is linear is non-negative, if X(ω) ≥ 0 P a.s.
, then E(X|G)(ω) ≥ 0 P a.s.
Let Q a probability measure which dominates P (P � Q) on a σ-algebra
G ⊆ F, which means that Q(A) = 0 =⇒ P (A) = 0 for all A ∈ G. The
Radon-Nikodym derivative of P w.r.t Q is a G-measurable random variable

ZG(ω) = ZG(P,Q)(ω) =
dP |G
dQ|G

(ω) ≥ 0

This means that P (dω) = Z(P,Q)(ω)Q(dω) on G, and if X is a G-measurable
random variable we change the measure to represent the expectation w.r.t.
P as an expectation w.r.t. Q:

EP (X) = EQ(XZ(P,Q))

We have that 0 ≤ ZG(P,Q) ∈ L1(Ω,G, Q), ja EQ(Z(P,Q)) = 1.
In statistics Z(P,Q) is called likelihood ratio.
Note that if A ⊆ G and P � Q on G, then trivially P � Q on A, and

ZA(P,Q) = EQ(ZG(P,Q)|A).
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This is the Q-martingale property for nested σ-algebrae.

We have also a formula to change the measure in the conditional expectation.
For P � Q, G ⊆ F, and X is F-measurable, Bayes formula holds:

EP (X|G) =
EQ(XZ(P,Q)|G)

EQ(Z(P,Q)|G)

Sometimes it is also called abstract Bayes formula. The proof is not difficult,
for B ∈ G, denoting Z = ZF(P,Q),

EP (X1B) = EQ(ZX1B) = EQ(EQ(ZX1B|G)) = EQ(EQ(ZX|G)1B)

= EQ

(
EQ(Z|G)

EQ(Z|G)
EQ(ZX|G)1B

)
= EQ

(
Z
EQ(ZX|G)

EQ(Z|G)
1B
)

= EP
(EQ(ZX|G)

EQ(Z|G)
1B
)

and the result follows from the definition of conditional expectation.

Example 1. As an exercise we show that the elementary Bayes formula
used in statistics follows as a special case:
Let (X,Y ) a random vector with values in IR2, with

P (X ∈ dx, Y ∈ dy) = π(x)p(y|x)dxdy

We work directly on the canonical space Ω = IR2. On the σ-algebra F =
σ(X,Y ), we take as reference measure a dominating product measure, for
example Q(dx, dy) = π(x)dxdy (although Q is not a probability measure,
Bayes formula works also in this case).
Clearly P � Q and Z(P,Q) = dP

dQ(x, y) = p(y|x).

When we condition to the sub-σ-algebra G = σ(Y ), our (abstract) Bayes
formula says that for any bounded measurable function f(x),

EP (f(X)|σ(Y ))(ω) =
EQ(f(X)Z(P,Q)|σ(Y ))(ω)

EQ(Z(P,Q)|σ(Y ))(ω)
=

∫
IR

f(x)π(x)p(Y (ω)|x)dx∫
IR

π(x)p(Y (ω)|x)dx

which is the elementary Bayes formula as we use it in statistics.

We introduce now a filtration IF := {Ft}t≥0, which is an increasing sequence
of σ-algebrae shich that, for all s ≤ t , Fs ⊆ Ft ⊆ F.
( here it does not matter whether the time is discrete or continuous, we can
always imbed discrete time in continuous time by taking Ft = Fbtc).

Definition 2. A process Mt is a (P, IF)-martingale if Mt is Ft measurable,
Mt ∈ L1(P ), and for s ≤ t

EP (Mt|Fs) = Ms .

When

EP (Mt|Fs) ≤Ms , s ≤ t
we say that (Mt) is a (P, {Ft})-supermartingale, and if

EP (Mt|Fs) ≥Ms , s ≤ t
(Mt) is a (P, {Ft})-submartingale.
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Given all the past, the conditional expectation of a future value of a mar-
tingale is the current value.
Note that the martingale property depends on the measure P and on the
filtration {Ft}.
Given two measures P and Q defined on (Ω,F) we consider at each time
t the restriction of the measures to the current information σ-algebra Ft,
Pt = P |Ft , Qt = Q|Ft .
If Pt � Qt on Ft, we define

Zt(P,Q) =
dPt
dQt

.

From the definition it follows that Zt ∈ L1(Q,Ft) and Zt(ω) ≥ 0.
We show that Zt is a (Q, IF) martingale: for s ≤ t if B ∈ Fs also B ∈ Ft
and we have

P (B) = EP (1B) = EQ(Zs1B) = EQ(Zt1B)

which means that Zs = EQ(Zt|Fs).

Example 2. On a probability space (Ω,F) we have a sequence of (real val-
ued) random variables (X1, X2, . . . , Xn, . . . ) , and two probability measures
P and Q such that (Xi) are independent and identically distributed under
both P and Q. We assume that P (X1 ∈ dx) = f(x)Q(X1 ∈ dx). Let
Ft = σ(X1, . . . , Xt), t ∈ IN. It follows that

Zt(P,Q) =
∏

s∈IN:s≤t
fs(Xi) .

Exercise 1. Check that Z(P,Q) is a (Q, {Ft})-martingale.

Definition 3. We say that a process (Xt) is adapted if Xt ∈ Ft for all t,
and in the discrete-time situation it is predictable if Xt ∈ Ft−1 for all t.

Theorem 1.1. (discrete-time Doob-Meyer decomposition).
If (Xt) is adapted to the filtration {Ft}, and E(|Xt|) < ∞ for all t =
0, 1, . . . , T then there is an unique decomposition

Xt = X0 +At +Mt

where At is {Ft}-predictable and Mt is a {Ft}-martingale with A0 = 0 and
M0 = 0.
If (Xt) is a supermartingale (respectively submartingale) the process At is
non-increasing, (respectively non-decrasing submartingale).

Proof

∆Xt = (∆Xt − EP (∆Xt|Ft−1)) + EP (∆Xt|Ft−1) = ∆Mt + ∆At

where

At =
t∑

s=1

EP (∆Xt|Ft−1), Mt =
t∑

s=1

(
∆Xt − EP (∆Xt|Ft−1)

)
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If another Doob decomposition of X existed, Xt −X0 = Ãt + M̃t we would
have (Mt − M̃t) = (At − Ãt) which means that (Mt − M̃t) is a predictable
martingale, which is necessarly the constant zero.

Definition 4. If (Yt) and (Xt) are sequences we define the stochastic integral
of Y with respect to X as the sequence

(Y ·X)t =
t∑

s=1

Ys∆Xs

which is called martingale transform or discrete stochastic integral

Theorem 1.2. Assume that (Yt) {Ft}-predictable process and (Mt) is a
(P, {Ft})-martingale. If Yt is a bounded random variable for all t, or alterna-
tively both Yt and Mt are square integrable r.v., it follows that E(|Yt∆Mt|) <
∞. Under such assumptions, the stochastic integral (Y ·M)t is a martingale.

Proof: Exercise.

2. Square integrable martingales and predictable bracket

A (P, {Ft})-martingale (Mt) is square integrable when E(M2
t ) < ∞ for all

t.
If Mt, Nt are square integrable martingales then by using Cauchy-Schwartz
inequality

E(|MtNt|) ≤
√
E(M2

t )
√
E(N2

t ) <∞

so that the product (MtNt) is in L1 and it makes sense to consider its
Doob-Meyer decomposition:
We have

MtNt −Mt−1Nt−1 = Mt−1∆Nt +Nt−1∆Mt + ∆Mt∆Nt =

Mt−1∆Nt +Nt−1∆Mt +
(
∆Mt∆Nt − EP (∆Mt∆Nt|Ft−1)

)
+ EP (∆Mt∆Nt|Ft−1)

We introduce the predictable process

〈M,N〉t :=

t∑
s=1

EP (∆Ms∆Ns|Fs−1)

We obtain the Doob-Meyer decomposition

MtNt = M0N0 + 〈M,N〉t +mt

where dmt the sum the martingale increments

dmt = Mt−1∆Nt +Nt−1∆Mt +
(
∆Mt∆Nt − EP (∆Mt∆Nt|Ft−1)

)
where the integrability conditions in the definition of martingale follow from
Cauchy-Schwartz inequality since we have assumed M and N are square-
integrable.
We denote also

[M,N ]t :=

t∑
s=1

∆Ms∆Ns
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it follows that the process ([M,N ]t − 〈M,N〉t) is a (P, {Ft})-martingale.

[M,N ]t is called quadratic covariation or square-bracket process, while 〈M,N〉t
is called predictable covariation, or predictable-bracket process.
Since E((∆Mt)P |Ft−1) ≥ 0, the process ([M,M ]t) is a submartingale and
therefore (〈M,M〉t) is non-decreasing. The notations [M ]t := [M,M ]t and
〈M〉t := 〈M,M〉t are also used.
Note [M,N ]t does not depend on the measure P , but the predictable
bracket 〈M,N〉t does !

Definition 5. Two square integrable martingales (Mt), (Nt) are orthogonal
if the product (MtNt) is a martingale. Equivalent conditions are
i) [M,N ]t is a martingale,
ii) 〈M,N〉t = 0, which means EP (∆Mt∆Nt|Ft−1)(ω) = 0 P a.s.

Note that this definition extends to the case when Mt is a martingale (not
necessarly square integrable) and Nt is a martingale in L∞(P ) ∀t.
Note also that

∆〈M〉t := EP ((∆Mt)
2|Ft−1)(ω) <∞ and EP (∆〉Mt〈) <∞⇐⇒ EP (∆M2

t )

It is possible that ∆〈M〉t < ∞ (P = 1) but EP (∆M2
t ) = ∞ (Mt is not

integrable). In such case we can still use the notion of predictable covariation
and orthogonality of martingales.

3. Orthogonal projections in the space of square integrable
martingales

Let M and N two square integrable martingales,
We write

Nt = N0 + (H ·M)t +N⊥t = N0 +

t∑
s=1

Hs∆Ms +N⊥t(3.1)

where (Ht) is the predictable process

Ht = 1
(
∆〈M,M〉t > 0

) ∆〈M,N〉t
∆〈M,M〉t

= 1
(
EP ((∆Mt)

2|Ft−1) > 0
) EP (∆Mt∆Nt|Ft−1)

EP ((∆Mt)2|Ft−1)

and N⊥t is a P -martingale orthogonal to Mt.

Note first that since the conditional expectation is a positive operator,

EP

(
∆M2

t |Ft−1)(ω) ≥ 0

and therefore

EP

(
∆M2

t |Ft−1)(ω) = 0

if and only if

P

(
∆M2

t = 0|Ft−1)(ω) = 1



6 GASBARRA

otherwise for some ε > 0

P

(
∆M2

t > ε|Ft−1)(ω) > η > 0

which is in contradiction with

EP

(
∆M2

t |Ft−1)(ω) = 0.

This implies

EP

(
∆Nt∆Mt|Ft−1)(ω) = 0

Note also that Ht ∈ L2(Ω,Ft−1P ), since

EP (Ht) = EP

({
EP (∆Mt∆Nt|Ft−1)

EP ({∆Mt}2|Ft−1)

}2)
≤ EP

(
∆N2

t

)
<∞

where we used the Cauchy-Schwartz inequality for the conditional expecta-
tion together with the properties of the conditional expectation.{

EP (∆Mt∆Nt|Ft−1)(ω)

}2

≤ EP ((∆Mt)
2|Ft−1)(ω)EP ((∆Nt)

2|Ft−1)(ω)

4. Martingale property and change of measure

Theorem 4.1. Let Q� P and let

Zt(ω) = Zt(Q,P ) =
dQt
dPt

(ω)

Then Mt is a (Q, {Ft})-martingale if and only if the product (MtZt) is a
(P, {Ft})-martingale.

Proof for s ≤ t, let A ∈ Fs.

EQ(1A(Mt −Ms)) = EP (1AZt(Mt −Ms)) = EP (1A(ZtMt − ZsMs))

where we use the properties of the conditional expectation. By definition of
conditional expectation it means that

EQ(Mt|Fs) = Ms if and only if EP (ZtMt|Fs) = ZsMs

5. Doob decomposition and change of measure

Suppose that M is a (P,Ft) martingale with M0 = 0 and ∆Mt > −1.

Zt = E(M)t :=

t∏
s=1

(1 + ∆Mt) =

(
1 +

t∑
s=1

Zs−1∆Ms

)
> 0

and we define on each Ft consistently a measure

Qt(dω) = Zt(ω)Pt(dω)

If (Zt)t=0,1,...,T is integrable, then (Zt) is a P -martingale and Qt(Ω) =
EP (Zt) = Z0 = 1 which is a probability measure.
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Example 3. Assume that {ξt(ω) : t = 1, . . . , T} are i.i.d. N(0, 1) distributed
(univariate gaussian with 0 mean and variance 1 ).
For a given θ ∈ IR Define

Mt(θ) =
t∑

s=1

{
exp(θξs −

1

2
θ2)− 1

}
This is a martingale with independent increments, and ∆Mt > −1.
Then we set Z0(θ) = 1 and

Zt(θ) = E(M(θ))t = 1 +

t∑
s=1

Zs−1(θ)∆Ms =

t∏
s=1

(
1 + exp(θξs −

1

2
θ2)− 1

)
=

t∏
s=1

exp(θξs −
1

2
θ2) = exp

(
θ

t∑
s=1

ξs −
1

2
θ2t

)
It follows that Zt(θ) is integrable, since under P , the r.v.

(∑t
s=1 ξs

)
is

gaussian N(0, t). Since integrability is satisfied, Zt(θ) is a P - martingale,
which defines a probability measure dQt(θ) = Zt(θ)dPt on Ft.

For example for Nt =
∑t

s=1 ξt, the martingale decomposition under Q(θ) is
given by

∆Nt =
(
∆Nt −∆〈N,M(θ)〉t

)
+ ∆〈N,M(θ)〉t{

ξt − EP
(
ξt exp(θξt −

1

2
θ2)
)}

+ EP
(
ξt exp(θξt −

1

2
θ2)
)

=
{
ξt − θ

}
+ θ

meaning that (Nt − θt) is a Q(θ)-martingale.
Here

EP
(
ξt exp(θξt −

1

2
θ2)
)

=
∂

∂θ
logEP

(
exp(θξt)

)
= θ

Assume that M and N are square integrable P martingales, ∆Mt ≥ −1 and
Zt = E(M)t, t = 1, . . . , T with ZT ∈ L1(P ) for all t.
By projecting N on M obtaining the orthogonal martingale decomposition

Nt = N0 + (H ·M)t +N⊥t

What happens to the martingale property of N and M under the new mea-
sure ?

Proposition 5.1. (Girsanov theorem in discrete time) The Doob decompo-
sition of N under Q is given by

Nt = N0 +
(
H · 〈M,M〉

)
t
+
(
H · (M − 〈M,M〉)

)
t
+N⊥t

where (M −〈M,M〉)t is a Q-martingale and N⊥ is a martingale under both
P and Q, and (H · 〈M,M〉)t is a predictable process.

Proof From Bayes’ formula of change of measure in conditional expectation,

EQ(∆Mt|Ft−1) =
EP (Zt∆Mt|Ft−1)

EP (Zt|Ft−1)
= EP

(
∆Mt

Zt
Zt−1

∣∣Ft−1

)
=

EP
(
∆Mt

(
1 +

∆Zt
Zt−1

)∣∣Ft−1

)
= EP (∆Mt|Ft−1) + EP ((∆Mt)

2|Ft−1) = 0 + ∆〈M,M〉t

which means that (Mt − 〈M,M〉t) is a Q-martingale.
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On the other hand

EQ(∆N⊥t |Ft−1) = EP (∆N⊥t ∆Mt|Ft−1) = ∆〈N⊥,M〉t = 0

since N⊥ and M are orthogonal martingales.

In example 3, we compute 〈M(θ),M(θ)〉, and find the law of (ξs) under the
probability measure QT (θ).
Recall that the characteristic function of the gaussian distribution N(µ, σ2)
is

ϕX(u) := Eµ,σ2(exp(iuX)) = exp
(
iuµ− 1

2
u2σ2

)
where X(ω) is N(µ, σ2)-distributed and i is the imaginary unit.
Now we want to compute the characteristic function of the vector ξ1, . . . , ξt
under the measure Q.
We have that for u = (u1, . . . , ut) ∈ IRt

EQ
(
exp(i

t∑
s=1

usξs)) = EP
(
Zt exp(i

t∑
s=1

usξs)) =

EP

(
exp

( t∑
s=1

(ius + θ)ξs −
1

2
θ2t

))
=

EP

(
exp

( t∑
s=1

i(us − iθ)ξs +
1

2

t∑
s=1

(us − iθ)2

))
exp

(
1

2

t∑
s=1

{−(us − iθ)2 − θ2}
)

=

t∏
s=1

EP

(
exp

(
(us − iθ)ξs +

1

2
(us − iθ)2

)) t∏
s=1

exp(iθus −
1

2
u2
s)

= 1× EP (exp(i(θ + ξs)us)

this means that the law under Q of ξs is the same as the law under P of
(θ + ξs), i.e. under Q (ξs : s = 1, . . . , t) are i.i.d. N(θ, 1).

6. Martingale predictable representation property

Let M be a P -martingale w.r.t. to a discrete time filtration {Ft : t ∈ IN}.
We say that M has the martingale representation property in the filtration
IF = {Ft}, if any other bounded (P, IF)-martingale (Xt) can be represented
as a constant plus a martingale transform w.r.t. M

Xt = X0 + (Y ·M)t = X0 +

t∑
s=1

Ys∆Ms

where (Yt) is IF-predictable, that is Yt is Ft−1-measurable for all t.
Since X is a bounded martingale, also ∆Ms(ω) conditionally bounded given
Fs−1 is bounded on the set

{
ω : Ys(ω) 6= 0},

∆Mt(ω) ≤‖ ∆Xt ‖L∞(P )

∣∣Yt(ω)
∣∣−1

Therefore the Mt is locally bounded, where a localizing sequence is given
for example by

τn := inf
{
t :‖ ∆Xt+1 ‖L∞(P )

∣∣Yt+1(ω)
∣∣−1

> n
}
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which is a stopping time since {τn ≤ t} ∈ Ft.
Note that this notation covers also the case of d-dimensional martingales.
In such case (Ys) is a d-dimensional predictable process, and

t∑
s=1

Ys∆Ms =
t∑

s=1

d∑
i=1

Y (i)
s ∆Ms(i)

Lemma 6.1. Let (Mt) be a (P, IF)-martingale.
(Mt) has the predictable representation property in the (IF)-filtration if and
only if
the only bounded (P, IF)-martingales (Nt) such that the product (MtNt) is a
(P, IF)-martingale are constant.

Proof Assume that the PRP holds for M . Then every bounded martingale
N has the form Nt = (H ·M)t. If N is such that (NtMt) is a martingale,
necessarly

∆(MtNt) = Mt−1∆Nt +Nt−1∆Mt + ∆Mt∆Nt =

(Mt−1Ht +Nt−1)∆Mt +Ht(∆Mt)
2

This gives a contradiction, since

0 = E(∆(MtNt)|Ft−1) = HtE((∆Mt)
2|Ft−1) 6= 0

with positive probability unless either ∆Mt = 0 or Ht = 0. This implies
that Nt is constant. The same argument gives the opposite implication.

Theorem 6.1. In the discrete time setting, M has the martingale repre-
sentation property in the filtration IF if and only if there are no other mar-
tingale measures Q ∼ P with bounded density for (Mt), that is if Q ∼ P ,
Z(ω) = dP

dQ(ω) is essentially bounded and (Mt) is a also a (Q, IF)-martingale,

necessarly Q = P .

Proof For simplicity we set F0 = {Ω, ∅}. Assume that Q ∼ P . We know
that Zt = Zt(Q,P ) is a (P, IF)-martingale.
By the predictable representation property,

∆Zt = Zt−1Ht∆Mt

where Ht is Ft−1-measurable.
We show that M is not a martingale under Q, unless Ht = 0.

EQ(∆Mt|Ft−1) = EP
(
∆Mt

Zt
Zt−1

∣∣Ft−1

)
= EP

(
∆Mt

(
1 +

∆Zt
Zt−1

)∣∣Ft−1

)
=

EP
(
∆Mt

(
1 +Ht∆Mt

)∣∣Ft−1

)
= EP (∆Mt|Ft−1) + EP (Ht(∆Mt)

2|Ft−1) =

0 +HtEP ((∆Mt)
2|Ft−1) 6= 0

unless Ht = 0 P -a.s. for all t. This means that Zt = 1 for all t and Q = P .

Viceversa, suppose that the representation property does not hold for M in
the filtration IF.
This means that there is some other bounded (P, IF)-martingale N such that
the product (MtNt) is a martingale. We can take N satisfying N0 = 0 and



10 GASBARRA

|Nt| ≤ 1 . It is a fact from martingale theory that a bounded martingale
(Nt) has almost surely a limit.
Define the measure on Ft

dQt =

(
1 +

Nt

2

)
dPt = Zt(ω)dPt

Note that (Zt) is a P -martingale with 0 < 1
2 ≤ Zt(ω) ≤ 3/2 and Z0 = 1, so

that Qt is a probabilty measure equivalent to Pt on Ft.
We have that

MtZt = Mt +
(NtMt)

2

is a P -martingale since (Mt) and (NtMt) are P -martingales. This means we
have constructed another measure Qt ∼ Pt, with Qt 6= Pt such that (Mt) is
a Q-martingale.

Example 4. Consider a sequence of i.i.d. standard normal random vari-
ables (ξt) on the probability space (Ω,F, P ). with the filtration of σ algebrae
Ft = σ(ξs : 1 ≤ s ≤ t).

Define Mt =
t∑

s=1
ξs. Mt is a P -martingale, since it has independent incre-

ments and centered. Mt is also square integrable, since the increments are
gaussian. Note that Ft = σ(Ms : 1 ≤ s ≤ t).

Note that ηt = (ξ2
t − 1) are also i.i.d. and centered, and Nt =

t∑
s=1

ηs is also

a P -martingale.
It follows that the product (NtMt) is a P -martingale,m since EP (ξtηt) =
EP (ξ3

t − ξt) = 0.
The filtration {Ft} generated by (Mt) contains the P -martingale (Nt) which
is is orthogonal to (Mt). Neither M or N have the predictable representation
property.
We show that there exist an equivalent martingale measure for M . Note that
∆Nt = (ξ2

t − 1) > −1 P -almost surely.
Therefore

Zt =
t∏

s=1

(1 + ∆Nt) = 1 +
t∑

s=1

Zs−1∆Ns > 0

defines an equivalent probability measure dQt = ZtdPt.
By Girsanov theorem, since (MtNt) is a P -martingale it follows that also
(MtZt) is a P -martingale. But this means that (Mt) is a Q-martingale. So
Q ∼ P but Q 6= P is another martingale measure for P .
In order to construct a bounded (P, {Ft})- martingale we can take the i.i.d.
sequence of centered and bounded random variables

εt := (ξ2
t ∧ 1)− EP (ξ2

t ∧ 1) ∈ (−1, 1)



BASIC FACTS FROM MARTINGALE THEORY 11

It follows that

EP (ξtεt) = EP (ξt(ξ
2
t ∧ 1))− EP (ξt)EP (ξ2

t ∧ 1) =

EP (ξt1(|ξt| > 1)) + EP (ξ3
t 1(|ξt| ≤ 1)) + 0 = 0

since the distribution ξt is symmetric around 0.
Therefore for any fixed T , the process stopped at T

XT
t :=

t∧T∑
s=1

εs

is a bounded P -martingale orthogonal to (Mt).

7. Application to hedging

Consider the finite probability space (Ω,F, P ) where Ω = {0, 1}T , with T <
∞, and F = 2Ω, the finite collection of all possible subset, and probability
measure satisfies P ({ω}) > 0 for all ω ∈ Ω.
An history is a vector ω = (ω1, . . . , ωT ) ∈ Ω and denote ωt = (ω1, . . . , ωt)
for t ≤ T .
Consider a market with a bank account Bt and a stock price St, t =
0, 1, . . . , T , adapted to the filtration IF with Ft = σ(ωs, s ≤ t), F0 = {Ω, ∅}
We assume that there are {Ft}-predictable processes Ut(ω) > Rt(ω) >
Dt(ω) > −1. B0 > 0 and S0 > 0 are determistic values, and we let

Bt = B0

t∏
s=1

(1 +Rt),

St = S0

t∏
s=1

(1 +Dt + ωt(Ut −Dt))

Suppose that G(ω) is a Ft-measurable contingent claim, and we want to find
a self-financing hedging strategy (βt, γt) satisfying

Vt = βtBt + γtSt = βt+1Bt + γt+1St .

Let Ḡ(ω) = G(ω)/BT (ω) the discounted contingent claim.
We show first that there is an unique probability measure Q such that Q ∼ P
and the discounted process S̄t := (St/Bt) is a Q-martingale.
Once we have shown that Q is the unique martingale measure for (S̄t) in
the filtration IF, it follows that every (Q, IF) martingale (Nt) has the repre-
sentation as

Nt = N0 +
t∑

u=1

Hu∆S̄u

where (Ht) is a IF-predictable process. In particular we can take Nt =
EQ(Ḡ|Ft), and obtain when t = T

Ḡ(ω) =
G(ω)

BT (ω)
= EQ(Ḡ|FT ) = EQ(Ḡ) +

T∑
t=1

γt∆S̄t

where (γt) is a IF-predictable process.
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This gives the unique price c(G) = EQ(Ḡ)B0 and the hedging strategy for
the contingent claim G.

Lets’ first compute the martingale measure Q.

∆S̄t =

(
St
Bt
− St−1

Bt−1

)
=
St−1

Bt−1

(
(1 +Dt + (Ut −Dt)ωt)

(1 +Rt)
− 1

)
=

St−1

Bt−1(1 +Rt)

(
(Ut −Dt)ωt − (Dt −Rt)

)
Taking conditional expectation with respect to a measure Q, and imposing
the martingale property

EQ(∆S̄t|Ft−1) =
St−1

Bt−1(1 +Rt)

(
(Ut −Dt)EQ(ωt|Ft−1)− (Dt −Rt)

)
= 0

which implies that Q is a martingale measure for (S̄t) if and only if

qt(ω
t−1) := EQ(ωt|Ft−1) =

(Rt −Dt)

(Ut −Dt)
,

where qt(ω
t−1) ∈ (0, 1) is a probability since we have assumed that Dt <

Rt < Ut, P a.s, and it is uniquely determined. We define globally the unique
risk-neutral measure Q as follows:

Q(ω) =

T∏
t=1

qt(ω
t−1)ωt(1− qt(ωt−1))1−ωt

and note that Q({ω}) > 0 for all ω ∈ Ω, therefore Q ∼ P .
We define the basic Q-martingale

Mt =
t∑

s=1

(
ωs − qs(ω(s−1))

)
We write

∆S̄t =
St−1

Bt−1(1 +Rt)
(Ut −Dt)(ωt − qt(ω(t−1))) =

St−1

Bt−1(1 +Rt)
(Ut −Dt)∆Mt

and we can represent ∆Mt in terms of ∆S̄t:

∆Mt =
Bt−1(1 +Rt)

St−1(Ut −Dt)
∆S̄t

Next we show how to use the martingale representation to compute the
hedging strategy for the contingent claim G.

Definition 6. If X(ω) is a FT -measurable random variable, we define its
discrete Malliavin derivative or stochastic gradient at time t w.r.t ωt as

∇tX(ω) := X(ω1, . . . , ωt−1, 1, ωt+1, . . . ωT )−X(ω1, . . . , ωt−1, 0, ωt+1, . . . ωT ) ,

for 1 ≤ t ≤ T .

Note that in general ∇tX(ω) is not Ft measurable unless the r.v. X(ω) =
X(ωt) is Ft-measurable. In such case ∇tX(ω) is also Ft−1-measurable.
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In particular the following quantities are FT−1-measurable.

∇TG(ωT−1) = (G(ωT−1, 1) +G(ωT−1, 0)) ,

∇T Ḡ(ωT−1) = (Ḡ(ωT−1, 1) + Ḡ(ωT−1, 0)) =
1

BT (ω)
(G(ωT−1, 1) +G(ωT−1, 0))

=
∇TG(ωT−1)

BT (ω)
since BT (ω) is FT−1-measurable,

and

∇TST (ωT−1) = (ST (ωT−1, 1) + ST (ωT−1, 0)) = ST−1(UT (ωT−1)−DT (ωT−1)) .

∇T S̄T (ωT−1) =
1

BT
∇T S̄T (ωT−1)

Note also that

∆S̄T = (S̄T − S̄T−1) =
ST−1

BT
(UT −DT )(ωT − qT ) = ∇T S̄T (ωT − qT )

so that we can write

∆MT = (ωT − qT (ωT−1)) =
1

∇T S̄T
∆S̄T =

BT
∇TST

∆S̄T

We have

Ḡ(ω) = Ḡ(ωT−1, ωT ) = Ḡ(ωT−1, 0) + (Ḡ(ωT−1, 1)− Ḡ(ωT−1, 0))ωT =

Ḡ(ωT−1, 0) +∇T Ḡ(ωT−1)ωT =

Ḡ(ωT−1, 0) +∇T Ḡ(ωT−1)qT +∇T Ḡ(ωT−1)(ωT − qT ) =

EQ(Ḡ|FT−1) +∇T Ḡ ∆MT = EQ(Ḡ|FT−1) +
∇T Ḡ
∇TST

BT∆S̄T

= EQ(Ḡ|FT−1) +
∇TG
∇TST

∆ST −
∇TG
∇TST

RTST−1

= EQ(Ḡ|FT−1) +
∇TG
∇TST

∆ST −
∇TG
∇TST

ST−1

BT−1
∆Bt

By investing at time (T − 1) the (random) value

cT−1(G) = EQ(Ḡ|FT−1(ω)BT−1(ω) =
EQ(G|FT−1)(ω)

1 +RT

we replicate the contingent claim G as follows: we buy the amount of stocks

γT =
∇TG
∇TST

at price γTST−1 (if γT < 0 we short-sell stocks) , if necessary by borrowing
from the bank at the predictable interest rate RT , and buy the amount of

βT =
1

BT−1

(
cT−1(G)− γTST−1

)
bonds at price BT−1, so that our capital is

VT−1 = cT−1(G) = βTBT−1 + γTST−1

At time (T − 1) the value of our portfolio is

VT−1 = βTBT−1 + γTST−1 = cT−1(G)
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while at time T the value of the portfolio becomes

VT = βTBT + γTST = βTBT−1(1 +RT ) + γTST−1 + γT∆ST

= EQ(G|FT−1)− γTST−1(1 +RT ) + γTST−1 + γT∆ST

= EQ(G|FT−1)− γTST−1RT + γT∆ST =

EQ(G|FT−1) + γT (ST − (1 +RT )ST−1) = EQ(G|FT−1) +BTγT∆S̄T = G(ω)

Remark The martingale measure Q when it is unique gives a device to
compute the price and hedging strategy. In fact the price hedging can be
computed without using probability, once we have assumed that all histories
ω ∈ Ω have positive probability:
A direct way to compute the hedging without using martingales is to solve
at time T the system of equations:

G(ωT−1, 0) = BTβT + γTST−1(1 +DT )

G(ωT−1, 1) = BTβT + γTST−1(1 + UT )

By substracting these two equations we get

γT =
∇TG(ωT−1)

ST−1(UT −DT )

and if the two equations with respective weights (1− qT (ωT−1)) correspond-
ing to ωT = 0 and qT (ωT−1) corresponding to ωT = 1 we obtain

βT =
1

BT

(
EQ(G|FT−1)− γTEQ(ST |FT−1)

)
=

1

BT
EQ(G|FT−1)− γT

ST−1

BT−1

combining these toghether we get the price of the contingent claim at time
(T − 1):

cT−1(G) = βTBT−1 + γTST−1 =
1

1 +RT
EQ(G|FT−1)

The martingale method has the advantage that it gives a probabilistic in-
terpretation to the price of the contingent claim, which can be computed
directly as a Q-expectation.
The other reason is that the martingale method can be extended to the
continuous-time setting.

The price and the hedging strategy in the whole time interval t = 1, . . . , T ,
is then obtained by induction:
Let ct(G) be the price of the contract G at time t ≤ T . This is a Ft-
measurable contingent claim. This means that are able to hedge the contin-
gent claim G expiring at time T if and only if at time t we own a portfolio
of value ct(G). By repeating the martingale argument or by writing directly
the system of equations we find the price of the contract at time (t − 1)
ct−1(G) and the replicating portfolio βt(ω

t−1), γt(ω
t−1).

The advantage the martingale method is that enables to compute directly
price and replicating strategy at all times t by computing Q-expectations.
The predictable representation property of the Q-martingale M gives
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Theorem 7.1. Discrete Clarck-Ocone formula:

EQ(Ḡ|Ft)(ω) = EQ(Ḡ) +

t∑
s=1

∇sEQ(Ḡ(ω)|Fs)
(
ωs − qs(ωs−1)

)
= EQ(Ḡ) +

t∑
u=1

∇uEQ(Ḡ(ω)|Fu)

∇uS̄u
∆S̄u

where by definition ∇tEQ(Ḡ(ω)|Ft) is Ft−1-measurable.

We set

γt =
∇tEQ(G(ω)|Ft)

∇tSt
This gives

Vt = EQ(G|Ft) = EQ(G|Ft−1) + γtBt∆S̄t

=
EQ(G|Ft−1)

1 +Rt
+ γt∆St +

(
EQ(G|Ft−1)

1 +Rt
− γtSt−1

)
1

Bt−1
∆Bt

= Vt−1 + γt∆St + βt∆Bt

where

βt =

(
EQ(G|Ft−1)

1 +Rt
− γtSt−1

)
1

Bt−1

This means that to obtain a portfolio with value EQ(G|Ft) at time t, we
need to invest

ct−1 := EQ(G|Ft−1)/(1 +Rt)

at time (t− 1). Equivalently, to have EQ(G Bt
BT
|Ft) in our portfolio at time

t we need to invest the amount

EQ(G
Bt−1

BT
|Ft−1) at time (t− 1) .

Inductively , to have G = EQ(G|FT ) at time T we have to invest at time
s ≤ T the amount

ct(G) = EQ(G
Bt
BT
|Ft)

at time t.
The hedging at time (t− 1) is given by

γt =
∇tEQ(G(ω) Bt

BT
|Ft)

∇tSt
=
∇tct(G)

∇tSt
,

βt =

(
ct−1(G)− γtSt−1

)
1

Bt−1

giving

Vt = ct(G) = c0(G) +

t∑
u=1

(
γu∆Bu + βu∆Bu

)
VT = G = c0(G) +

T∑
u=1

(
γu∆Bu + βu∆Bu

)
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When Rt is deterministic, we can take the discounting factors Bt/BT out-
side the conditional expectation.

If (Dt, Rt, Ut) are all deterministic, then under the martingale measure Q the
random variables ωt is independent from the past. Then the computation
of the hedging strategy may be simplified by using the following formula:

Corollary 7.1. If (Dt, Rt, Ut) are deterministic at all t ≤ T , conditional
expectation and gradient commute in Ito-Clarck formula

∇tEQ(G|Ft) = EQ(∇tG|Ft) = EQ(∇tG|Ft−1) ,

giving

EQ(G|Ft)(ω) = EQ(G) +

t∑
s=1

EQ(∇sG|Fs)
(
ωs − qs(ωs−1)

)
.

Proof When ω = (ω1, . . . , ωT ) we denote ωt,T the vector (ωt, . . . , ωT ).
Using the independence of the r.v. (ωt),

EQ(∇tG|Ft)(ωt) =
∑

ωt+1,T∈{0,1}T−t

{
G(ωt−1, 1, ωt+1,T )−G(ωt−1, 0, ωt+1,T )

}
Q(ωt+1,T )

= ∇tEQ(G|Ft)(ωt)

which is Ft−1-measurable.

Example 5. Assume that Rt = r, Ut = u,Dt = d deterministic, with −1 <
d < r < u. Then qt = q = (r − d)/(u− d) is constant. We have that

St = S0(1 + u)Nt(1 + d)t−Nt

where Nt =
t∑

s=1
ωs.

Then if G(ω) = ϕ(ST ) is a plain european option, we compute the price at
time t = 0 using the distribution Binomial(q, T ).

V0 = c0(G) = B0EQ(ϕ(ST )/BT ) =

(1 + r)−T
T∑
n=0

(
T

n

)
qn(1− q)T−nϕ

(
S0(1 + u)n(1 + d)T−n

)
.

Similarly since the conditional distribution of (NT−Nt) given Ft is Binomial(q, T−
t), at time t the price of the replicating portfolio is

Vt = ct(G) = BtEQ(ϕ(ST )/BT |Ft) =

(1 + r)t−T
T−t∑
n=0

(
T − t
n

)
qn(1− q)T−t−nϕ

(
S0(1 + u)Nt+n(1 + d)T−Nt−n) .
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with this amount of money, we invest in γt+1 stocks and invest the rest in
the bank account, with

γt+1 =
∇t+1ct+1(G)

∇t+1St+1
= (1 + r)t+1−T EQ(∇t+1G|Ft)

St(u− d)
=

(1 + r)t+1−T 1

St(u− d)

T−t−2∑
n=0

{(
T − t− 2

n

)
qn(1− q)T−t−2−n ×

×
(
ϕ
(
S0(1 + u)Nt+n+1(1 + d)T−Nt−n−2

)
− ϕ

(
S0(1 + u)Nt+n(1 + d)T−Nt−n−1

))}


