X-ray tomography:
 history, principles, and algorithms

Samuli Siltanen

samuli.siltanen@helsinki.fi
http://www.siltanen-research.net

Inverse Problems: The Legendary Course University of Helsinki, spring 2014

Outline

History

Modelling X-ray attenuation

Matrix model approach to tomography

Godfrey Hounsfield and Allan McLeod Cormack were the first to develop X-ray tomography

Cormack (left) and Hounsfield (top) received Nobel prizes in 1979. Right: an early tomographic image.

Reconstruction of a function from its line integrals was first invented by Johann Radon in 1917

$$
f(P)=-\frac{1}{\pi} \int_{0}^{\infty} \frac{d \overline{F_{p}}(q)}{q}
$$

This is an illustration of the Radon transform

Tomographic reconstruction using the classical Filtered Back-Projection (FBP) algorithm

Outline

History

Modelling X-ray attenuation

Matrix model approach to tomography

Wilhelm Conrad Röntgen inveted X-rays and was awarded the first Nobel Prize in Physics in 1901

A digital X-ray detector counts how many photons arrive at each pixel

Adding material between the source and detector reveals the exponential X -ray attenuation law

We take logarithm of the photon counts to compensate for the exponential attenuation law

Final calibration step is to subtract the logarithms from the empty space value (here 6.9)

Outline

History

Modelling X-ray attenuation

Matrix model approach to tomography

Let us study a simple two-dimensional example of tomographic imaging

Tomography is based on measuring densities of matter using X-ray attenuation data

A projection image is produced by parallel X-rays and several detector pixels (here three pixels)

For tomographic imaging it is essential to record projection images from different directions

The length of X -rays traveling inside each pixel is important, thus here the square roots

The direct problem of tomography is to find the projection images from known tissue

$\begin{array}{lll}6 & 7 & 11\end{array}$

The inverse problem of tomography is to reconstruct the interior from X-ray data

$\begin{array}{lll}6 & 711\end{array}$

The limited-angle problem is harder than the full-angle problem

9 unknowns,
6 equations

9 unknowns,
11 equations

In limited-angle imaging, different objects may produce the same data

Reconstruction requires additional a priori information

5	6	2
1	5	2
4	0	-1
9	1	3
1	0	7
3	0	0

We write the reconstruction problem in matrix form

Measurement model: $m=S f+\varepsilon$

This is the matrix equation related to the above measurement

$$
\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6}
\end{array}\right]=\left[\begin{array}{ccccccccc}
0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\
\sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} \\
0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{l}f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ f_{5} \\ f_{6} \\ f_{7} \\ f_{8} \\ f_{9}\end{array}\right]+\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6}\end{array}\right]$

