
Inverse problems course, spring 2014 Exercise 5 (February 18-21, 2014)
University of Helsinki
Department of Mathematics and Statistics
Samuli Siltanen, Esa Niemi and Teemu Saksala

Note that this exercise has more than one page and contains two types of exercises:
theoretical (T) and computational (M).

Please complete the theoretical exercises T1 and T2 before the exercise session
and be prepared to present your solution there. Exercise T3 is more complicated
and needs not be done beforehand. (Of course you can do T3 beforehand if you
want!) You will get credit for it by understanding it in the exercise session.

T1. Explain how the conjugate gradient method can be used to solve the linear
equation (ATA + αLTL)f = ATm without actually constructing any of the
matrices A,AT , L or LT .

Answer: We have to make two standing assumptions if we want to use the-
orems of sections 5.5.1 and 5.5.2 of textbook. Assume that α > 0 and that
square matrix

Ã := ATA+ αLTL

is invertible. For instance it’s safe to assume that square matrix L is invertible,
then the invertibility of Ã follows from T1 of exercise set 4.

If we want to use the Conjugate gradient method we must first clarify what is
the quantity we want to minimize. In our case the quantity is

‖Ãf − ATm‖2. (1)

Calculate

‖Ãf − ATm‖2 = 〈Ãf, Ãf〉 − 2〈Ãf, ATm〉+ 〈ATm,ATm〉

= fT ÃT Ãf − (2mTAÃ)f + ‖ATm‖2. (2)

It follows that ÃT Ã is positive definite and symmetric, since for any v ∈ Rn 6= 0
it holds that

vT ÃT Ãv = (Ãv) · (Ãv) = ‖ Ãv︸︷︷︸
6=0, Ã invertible

‖2 > 0.

Write
Q := 2ÃT Ã and bT := (2mTAÃ).

Then it holds by equation (2) that we minimize the quantity (1) iff we minimize

1

2
fTQf − bTf. (3)

But now quantity (3) is the quantity (5.23) of the textbook and as the exercise
T2 will show us it can be minimized by conjugate gradient method. We should

also note that in order to use the conjugate gradient method we need only to
know the vectors

b and Qdk, for every k ∈ {0, . . . , n− 1}.

not the matrices L or Ã.

T2. Prove that the vectors dk constructed in the conjugate gradient algorithm in
Section 5.5.2 of the textbook satisfy the assumptions of Theorem 5.4 of the
textbook.

Answer: Suppose that we are given a symmetric and positive definite matrix
Q. We must show that the set (dk)

n−1
k=0 is Q orthogonal i.e.

dTkQdj = 0, if k 6= j.

To prove this we must use induction. The proof given here is from a book
Numerical Optimization by Nocedal and Wright Theorem 5.3. You can find a
part of the book copied in the same folder as the textbook. First we note that
by Conjugate gradient algorithm it holds that{

xk+1 = xk + αkdk
gk = Qxk − b

⇒ gk+1 = gk + αkQdk. (4)

Here we multiplied the first row with Q and used the second row for k and
k + 1. Let k ∈ N and suppose that xk − x∗ 6= 0. We will prove the following
three claims, where the one we are interested is the last one.

span(g0,g1, . . . ,gk) = span(g0, Qg0 . . . , Q
kg0) (5)

span(d0,d1, . . . ,dk) = span(g0, Qg0 . . . , Q
kg0) (6)

dTkQdi = 0, for i = 0, . . . , k − 1 (7)

Since we assumed that d0 = −g0 the equations (5) and (6) hold trivially. By
Conjugate Gradient algorithm it holds that

dk+1 = −gk+1 + βkdk and βk(d
T
kQdk) = −gTk+1Qdk

Then it holds that

βkd
T
kQdk = (βkdk − dk+1)

TQdk ⇒ −dTk+1Qdk = 0.

I.e. equation (7) holds for k = 1.

Next we prove by induction equation (5). We assume that equations (5) and
(6) hold for k. Then it holds that

gk ∈ span(g0, Qg0 . . . , Q
kg0) and dk ∈ span(g0, Qg0 . . . , Q

kg0)

⇒ Qdk ∈ span(Qg0, Q
2g0 . . . , Q

k+1g0).

By equation (4) and induction hypothesis we have that

gk+1 ∈ span(g0, Qg0, Q
2g0 . . . , Q

k+1g0).

By induction hypothesis of equation (5) we have now

span(g0,g1, . . . ,gk,gk+1) ⊂ span(g0, Qg0 . . . , Q
k+1g0)

By induction hypothesis of (6) we have that

Qk+1g0 = QQkg0 ∈ span(Qd0, Qd1, . . . , Qdk)

By equation (4) it holds that

Qdi =
gi+1 − gi

αi
for all i = 0, 1, . . . , k.

Therefore we have that

Qk+1g0 ∈ span(Qd0, Qd1, . . . , Qdk) ⊂ span(g0,g1, . . . ,gk+1).

By induction hypothesis we have now proved that

span(g0, Qg0 . . . , Q
k+1g0) ⊂ span(g0,g1, . . . ,gk,gk+1)

This ends the proof of equation (5) for k+ 1. Next we prove that (6) holds for
k + 1. Recall that in Conjugate gradient algorithm we have assumed that

dk+1 = −gk+1 + βkdk (8)

Write

span(d0,d1, . . . ,dk+1)
(8)
= span(d0,d1, . . . ,dk,gk+1)

induction hyp
= span(g0, Qg0 . . . , Q

kg0,gk+1)

(5)for k
= span(g0,g1 . . . ,gk,gk+1)

(5)for k+1
= span(g0, Qg0 . . . , Q

kg0, Q
k+1g0)

This ends the proof of equation (6) for k + 1.

Next we prove that (7) holds for k + 1. Multiply equation (8) by Qdi i =
0, . . . , k to get

dTk+1Qdi = −gTk+1Qdi + βkd
T
kQdi. (9)

By definition of βk it holds that right hand side of (9) is zero if i = k. By
induction hypothesis for equation (7) it holds that the second term of right
hand side of (9) vanishes. Therefore it suffices to show that

gTk+1Qdi = 0, for all i = 0, . . . , k.

First we note that it holds

gTk+1di = 0, for all i = 0, . . . , k

as it is indicated in textbook. If one wants to find a rigorous proof for this
claim it is Theorem 5.2. in book mentioned earlier. Now it holds that

Qdi ∈ Q span(g0, Qg0 . . . , Q
ig0) = span(Qg0, Q

2g0 . . . , Q
i+1g0)

(6)
⊂ span(d0,d1, . . . ,di+1)

Therefore it holds that

gTk+1Qdi = gTk+1

(i+1∑
j=0

ajdj

)
= 0, for i = 0, . . . , k − 1.

This proves our claim.

T3. Show that truncated SVD (as formulated in Definition 4.2.1) gives a regular-
ization method in the sense of Definition 3.4.1.

Answer: Let α > 0. In our case we are interested about the situation

A : Rn → Rk, A is linear and one-to-one,

As we know already from linear algebra every Euclidean space is a finite di-
mensional Hilbert space and by this it also holds that A is bounded. Write A
into SVD as A = UDV T . Since A is one-to-one it must hold that the singular
values d1 ≥ d2 ≥ . . . ≥ dr are all strictly positive and r = min{n, k}.

Let 1
D

be that matrix where we have changed di 7→ 1
di

and kept all the zero
elements of D intact. Then it holds that

D+ =
1

D

T

.

By definition we have that D+
α = D+ if α < dr, since

rα := min
{
r,max{j|1 ≤ j ≤ min(k, n), dj > α}

}
.

We also defined that
Lα := V D+

αU
T .

Therefore it holds by orthogonality of U and V that

LαAf = (V D+
αU

T)(UDV T)f = (V D+
αDV

T)f
α→0−→ (V D+DV T)f = f.

For the second claim we can consider function α(t) = t, t ∈ (0, 1). We have to
prove that

α(t)
t→0−→ 0 and sup

m

{
‖Lα(t)m− f‖ : ‖Af −m‖ ≤ t

} t→0−→ 0.

The first claim holds trivially by the choice of α. Write m = Af + ε, ‖ε‖ < t.
Then it holds that

‖Af −m‖ = ‖ε‖ ≤ t.

Calculate

‖Lα(t)m− f‖ ≤ ‖Lα(t)Af − f‖+ ‖Lα(t)ε‖ = ‖Lα(t)Af − f‖+ ‖(V D+
αU

T)ε‖

= ‖Lα(t)Af − f‖+ ‖(D+
αU

T)ε‖ ≤ ‖Lα(t)Af − f‖+ ‖(D+UT)ε‖

≤ ‖Lα(t)Af − f‖+
1

dr
‖(UT)ε‖ = ‖Lα(t)Af − f‖+

t

dr

t→0−→ 0.

You can work on these Matlab exercises (marked with M) in the exercise session.

M1. Implement the conjugate gradient method can be used to solve the linear equa-
tion (ATA+ αLTL)f = ATm for the one-dimensional deconvolution problem.
Let L be the first-order finite difference matrix; you can implement it in a
matrix-free fashion using the Matlab command diff.

M1. Answer

In this exercise there are many options. One can do it by using explicit matri-
ces A,L or matrix-freely by replacing A and L by appropriate routines (e.g. A
by conv.m and L by diff.m). Also, one can either implement the conjugate
gradient method by him/herself or just use the Matlab’s built-in (precondi-
tioned) conjugate gradient routine pcg.m. In the following we present three
possible solutions:

% Note that the files DC1_cont_data_comp.m and DC2_discretedata_comp.m must

% be run before this code.

% Load the data (N.B. Add the last three variables (PSF, Ca and Dx)

% to the corresponding save command in file DC2_discretedata_comp.m and run

% it)

load DC2_discretedata A x xx n m mn mIC sigma PSF Ca Dx

% Choose the regularization parameter

alpha = 0.1;

%%

% 1. THE EASIEST WAY

% Use Matlab’s function pcg.m and explicit matrices A and L

L = eye(n);

L = L-[L(:,end),L(:,1:end-1)];

AA = A.’*A+alpha*(L.’*L);

b = A.’*mn(:);

rec = pcg(AA,b);

% Take a look at the reconstruction

figure(1)

clf

plot(xx,DC_target(xx),’k’);

hold on

plot(x,rec,’r’)

%%

% 2. IMPLEMENT CONJUGATE GRADIENT METHOD WITHOUT USING PCG.M

Q = A.’*A+alpha*(L.’*L);

b = A.’*mn(:);

% Choose the number of iterations (we remark that there are many

% possible stopping conditions for the iteration; for details, see

% literature)

maxIter = 10;

% Choose initial point

f_prev = zeros(n,1);

% Start iteration

d_prev = b-Q*f_prev;

g_prev = -d_prev;

for k=1:maxIter

Qd = Q*d_prev;

dQd = d_prev.’*Qd;

lambda = (-g_prev.’*d_prev)/dQd;

f_next = f_prev + lambda*d_prev;

g_next = Q*f_next-b;

beta = -(g_next.’*Qd)/dQd;

d_next = -g_next + beta*d_prev;

f_prev = f_next;

g_prev = g_next;

d_prev = d_next;

end

rec = f_prev;

% Take a look at the reconstruction

figure(2)

clf

plot(xx,DC_target(xx),’k’);

hold on

plot(x,rec,’r’)

%%

% 3. MATRIX-FREE IMPLEMENTATION (let’s use pcg.m here for simplicity)

% Let’s take the discretized PSF from DC2_discretedata_comp.m and compute

% the convolution Af using the PSF and Matlab’s function conv.m (without

% matrices)

Afun = @(f) conv(f,Dx*PSF,’same’);

% Define similarly the operations Lf and L^Tf matrix-freely (assume

% periodic boundary conditions)

Lfun = @(f) diff([f;f(1)]);

LTfun = @(f) -diff([f(end);f]);

% Finally define the function that computes the operation

% (A^T*A + alpha*L^T*L)f matrix-freely

Qfun = @(f) Afun(Afun(f)) + alpha*LTfun(Lfun(f));

% Now use pcg.m to find the solution (reconstruction)

rec = pcg(Qfun,Afun(mn(:)));

% Take a look at the reconstruction

figure(3)

clf

plot(xx,DC_target(xx),’k’);

hold on

plot(x,rec,’r’)

M2. Use Morozov discrepancy principle for automatic determination of regulariza-
tion parameter in M1. You can take the file DC08 Tikhonov Morozov1.m as a
starting point. Note that the file DC08 Tikhonov Morozov1.m is not consistent
with the previous deconvolution files shared at the course website and will not
work properly without appropriate modification.

M2. Answer

We first remark that the Morozov discrepancy principle as presented in the
textbook pp. 72–73 and implemented in DC08 Tikhonov Morozov1.m is not
applicable as such to the regularization problem in M1 with L being a finite
difference matrix; in order to use the Morozov principle for M1, we have to
choose L = I.

% Load the data

load DC2_discretedata A x xx n m mn mIC sigma

% Choose the regularization parameter alpha by copying lines 36-42, 47 and

% 52-60 from DC08_Tikhonov_Morozov1.m

% How many singular values are zero?

[U,D,V] = svd(A);

svals = diag(D);

r = max(find(svals>1e-10));

% Here we implement finding the zero in a naive but simple way.

mpilkku = U.’*mn(:);

delta = sqrt(n)*sigma;

alphavec = [0.0000001:.00001:.01];

objfun = zeros(size(alphavec));

dvec = zeros(size(mpilkku));

for iii = 1:length(alphavec)

dvec(1:r) = alphavec(iii)./(alphavec(iii) + svals(1:r).^2).*mpilkku(1:r);

dvec(r+1:end) = mpilkku(r+1:end);

objfun(iii) = dvec.’*dvec - delta^2;

end

alpha = alphavec(min(find(objfun>0)));

% Let’s use method 1 from M1 to solve the Tikhonov problem with the

% alpha chosen above

AA = A.’*A+alpha*eye(n);

b = A.’*mn(:);

rec = pcg(AA,b);

% Take a look at the reconstruction

figure(1)

clf

plot(xx,DC_target(xx),’k’);

hold on

plot(x,rec,’r’)

%%

% OPTION 2: Apply Matlab’s built-in optimization routine fminbnd.m

% Another way to determine alpha: use fminbnd.m function to find the

% minimizer of the function abs(f)=abs(f(alpha)), where function f as

% defined on p. 73 in the textbook

[U,D,V] = svd(A);

svals = diag(D);

mpilkku = U.’*mn(:);

delta = sqrt(n)*sigma;

f = @(a) abs(sum(((a./(svals.^2+a)).^2).*(mpilkku.^2)) - delta^2);

alpha = fminbnd(f,0,100);

% Compute and take a look at the reconstruction

AA = A.’*A+alpha*eye(n);

b = A.’*mn(:);

rec = pcg(AA,b);

figure(2)

clf

plot(xx,DC_target(xx),’k’);

hold on

plot(x,rec,’r’)

