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Note that this exercise has more than one page and contains several types of exer-
cises.

Please complete the theoretical exercises (marked with T) before the exercise
session and be prepared to present your solution there.

T1. Denote by Rf(s, ~θ) the Radon transform of a function f : R2 → R. Consider
the forward map F : f 7→ Rf defined on a model space of well-behaving func-
tions, for example essentially bounded functions supported in the unit disc.
Prove that F is injective. (Hint: use the Fourier slice theorem.)

Answer

Let

BD := {f : R2 → R : f is continuous and suppf ⊂ B(0, 1) ⊂ R2}.

i.e. BD is the set bounded functions which are supported in unit disc. We
want to prove following:

Claim: Radon transform R : BD → BD is well defined and injective.
Let f ∈ BD, θ ∈ S1 and s > 0. Consider line Ls := {x ∈ R2 : x · θ = s} of
integreation in Rf(θ, s). Define D = B(0, 1).

We first show that Ls ∩ D = ∅ if s > 1 which proves that Rf(θ, s) = 0
since f is supported in D. Suppose that θ2 6= 0 and x ∈ Ls. Then it holds
that x 6= 0 and

x · θ = s⇔ x1θ1 + x2θ2 = s⇔ x2 =
s− x1θ1

θ2
.

Calculate
d

dt
||x||2 = 2

x1 − θ1s
θ22

if
d

dt
||x||2 = 0⇒ x1 = sθ1 and x2 =

s− sθ21
θ2

= sθ2.

Therefore it holds that dist(Ls, 0) ≥ s and if s > 1⇒ Ls ∩D = ∅.
Let

γθ,s(t) = (t,
s− x1θ1

θ2
).

Now it holds that

Rf(θ, s) =

∫
x·θ=s

f(x)dx⊥ =

∫ ∞
−∞

f(γθ,s(t))dt.



Since curve γθ,s is continuous and f is also continuous we know that the com-
posite mapping f ◦ γ is continuous. Next calculation shows that the mapping
f ◦ γθ,s is integrable and that Radon transform is well defined

|Rf(θ, s)| = |
∫ ∞
−∞

f(γθ,s(t))dt| ≤ ||f ||∞m1(LS ∩D) ≤ 2||f ||∞.

Here m1 is the one dimensional Lebesque measure. Notice that we have now
proven that Rf ∈ BD.

Next we consider the injectivity of Radon transform. Let f, g. Notice that
Radon tranform is a linear mapping from vectorspace BD into BD. We use
the Fourier slice theorem which is Theorem 2.3.1. in textbook and basic prop-
erties of Fourier transform. Suppose that

0 = Rf − Rg = R(f − g).

By slice theorem it then holds that

0 =

∫ ∞
−∞

R(f − g)(θ, s)︸ ︷︷ ︸
=0 almost everywhere

e−isrds = f̂ − g(rθ).

Since Fourier transform is one-to-one, it holds that f(x) − g(x) = 0 almost
everywhere. Therefore we have proven, that f = g ∈ BD.

T2. Calculate through the proof of Lemma L 1 on page 11 of Professor Erkki
Somersalo’s classical material uploaded to the course web page by the name
Somersalo Inversio Liite2.pdf. I know it’s in Finnish, but it’s mostly math-
ematical formulas so it should not matter. Alternatively, you can look for
another source in the literature. The main point is to understand why the
Fourier transform of a Gaussian is also a Gaussian.

Answer

Claim: Let
ψ : Rn → R, ψ(x) = (2π)n/2e−||x||

2/2.

For function ψ it is true, that

ψ̂(ξ) = e−||ξ||
2/2 and F−1ψ̂(x) = ψ(x).

Proof : We first consider one dimensional case. Define function

H : R→ R, H(s) :=

∫
R
e−itse−t

2/2dt.

Since H is nice enough we can calculate

d

ds
H(s) =

∫
R

d

ds
(e−its)e−t

2/2dt = −i
∫
R
te−itse−t

2/2dt = i

∫
R
e−its

d

dt
e−t

2/2dt.



Next we use the integration by parts formula

d

ds
H(s) = i

∫
R
e−its

d

dt
e−t

2/2dt = i[e−itse−t
2/2]∞−∞︸ ︷︷ ︸

=0

−i
∫
R

d

dt
(e−its)e−t

2/2dt

= −s
∫
R
e−itse−t

2/2dt = −sH(s).

Therefore we have obtained a separable differential equation H ′(s) = −sH(s).
It is easy to prove that

H(s) = H(0)e−s
2/2.

In order to find H(0) we have to find it from the original deffinition of H.

H(0)2 =

(∫
R
e−t

2/2dt

)2

=

∫
R
e−x

2/2dx

∫
R
e−y

2/2dy =

∫
R

∫
R
e−(x

2+y2)/2dxdy.

We can find H(0) easier, if move to Spherical coordinates. Recall that the
spherical coordinates in R2 have a following definition{

x = r cos(φ)
y = r sin(φ)

⇒ dxdy = rdrdφ.

Then we just complete calculation

H(0)2 =

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdφ = −2π

∫ ∞
0

d

dr
e−r

2/2dr = 2π

⇒ H(s) =
√

2π e−s
2/2.

Now we move to n−dimensional case. Using the definition of Fourier transform
and 1-dimensional case it is now easy to calculate

ψ̂(ξ) :=
1

(2π)n

∫
Rn

(2π)n/2e−||x||
2/2e−ix·ξdx =

1

(2π)n/2

∫
Rn

e−(x·x/2+ix·ξ)dx

=
1

(2π)n/2

∫
Rn

e−
∑n

k=1(x
2
k/2+ixkξk)dx =

1

(2π)n/2

∫
Rn

n∏
k=1

e−(x
2
k/2+ixkξk)dx

=
1

(2π)n/2

n∏
k=1

∫
R
e−(x

2
k/2+ixkξk)dxk =

1

(2π)n/2

n∏
k=1

H(ξk)

=
1

(2π)n/2

n∏
k=1

√
2π e−ξ

2
k/2 = e−||ξ||

2/2.

If we recall the formula for inverse Fourier transform and note that ψ is sym-
metric we also get the second claim from last monster equation.



T3. Consider the inverse problem defined by the measurement model m = Af in
the cases

(a) A =

[
1 0
0 0

]
, m =

[
1
0

]
, (b) A =

 0 1
1 0
13 31

 , m =

 1
1
1

 .
Which of Hadamard’s conditions are violated, if any?

Answer: In case (a) we note that matrix A has a nontrivial kernel. Therefore
we cannot find any continous inverse for A since A is a square matrix. This
violates every Hadamard’s conditions.

Let x ∈ R2\{0}. Then it holds that

Ax =

 x2
x1

13x1 + 31x2

 6= 0.

This shows that A is injective. But still equation

Ax =

 x2
x1

13x1 + 31x2

 =

 1
1
1

 (1)

does not have a solution, since by equation (1) it must be that x1 = x2 = 1,
and then it should be that m3 = 44.

If m =

 1
1
44

, there would still be a problem with Hadamards conditions

2 and 3 since dim ImA = 2 < 3 = dimR3. Therefore it holds that for inctance
matrix

B =

[
0 1 0
1 0 0

]
is a smooth inverse of A. Since there exists a invere of A it holds that H1 is
true. On the other hand B is not only matrix that is an inverse of A and for
matrix B even the smallest maesurement error ruins the recovery. So H2 and
H3 do not hold.

T4. Recall problem T2 from Exercise 1.

(a) Construct the 10×10 convolution matrix A with the property that Af is
the same vector than p̃ ∗ f .

(b) Check that AT = A.

Answer: Let (p̃ ∗ f) ∈ R10 be the discrete convolution vector. Keeping the
periodic boundary condition in mind we recall that jth entry of (p̃ ∗ f) is

(p̃ ∗ f)j =
2∑

k=−2

p̃kfj−k. (2)



Since we had that p̃ = [1, 1, 1, 1, 1]T we see from equation (2) that matrix

A =



1 1 1 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 1 1 1


.

It is now easy to see that AT = A since A is symmetric near main diagonal
and there is 3 number 1’s in simmillar positions in both right uppercorner and
left bottomcorner.



You can work on these Matlab exercises (marked with M) in the exercise session.

M1. Consider the linear equation x1 + x2 = 1.

(a) Write the equation in the matrix form Ax = y. (That is, specify the
elements in the 1× 2 matrix A and the 1-vector y ∈ R.)

(b) Use Matlab to compute the singular value decomposition A = UDV T .

(c) Using the result of (b), construct D+ and the minimum norm solution
x+ := V D+UTy in Matlab. Draw the line x2 = −x1 + 1 and the point
x+ in the (x1, x2)-plane. Discuss the result.

Answer:

Here is an example script (there are, of course, many ways to do the same
things):

% Form matrix A and vector y

A = [1,1];

y = 1;

% Compute the SVD of A

[U,D,V] = svd(A);

% Construct D_plus using the SVD and a for loop (there are plenty of ways

% doing the same thing, and applying function pinv.m directly to matrix A

% would even make the separate computation of the SVD above useless)

D_plus = zeros(size(D’));

for ii=1:min(size(D))

if D(ii,ii) > 0

D_plus(ii,ii) = 1/D(ii,ii);

end

end

% Compute the minimum norm solution

x_plus = V*D_plus*U.’*y;

% Create a grid on the interval [0,1] for plotting the line x2=-x1+1

x1 = linspace(0,1);

% Plot the line x2=-x1+1 and the point x_plus

figure

plot(x1,-x1+1)

hold on

plot(x_plus(1),x_plus(2),’o’)

As expected, the minimum norm solution x+ is that point on the line x2 =
−x1 + 1 that has the smallest norm (smallest distance from the origin).



M2. Consider equations x1 + x2 = 1, x2 = −2 and −1
3
x1 + x2 = −2.

(a) Write the equations in the matrix form Ax = y. (That is, specify the
elements in the 3× 2 matrix A and the vector y ∈ R3.)

(b) Use Matlab to compute the singular value decomposition A = UDV T .

(c) Using the result of (b), construct D+ and the minimum norm solution
x+ := V D+UTy in Matlab. Draw the three lines specified by the equa-
tions and the point x+ in the (x1, x2)-plane. Discuss the result.

Answer:

Here is an example script (once again, there are many ways to do the same
things):

% Form matrix A and vector y

A = [1,1;0,1;-1/3,1];

y = [1;-2;-2];

% Compute the SVD of A

[U,D,V] = svd(A);

% Construct the D_plus using the SVD as in M1

D_plus = zeros(size(D’));

for ii=1:min(size(D))

if D(ii,ii) > 0

D_plus(ii,ii) = 1/D(ii,ii);

end

end

% Compute the minimum norm solution

x_plus = V*D_plus*U.’*y;

% Create a grid on the interval [-3,3] for plotting the lines x2=-x1+1,

% x_2=-2 and x2=x1/3-2

x1 = linspace(-3,3);

figure

plot(x1,-x1+1,’LineWidth’,1)

hold on

plot(x1,-2,’LineWidth’,1)

plot(x1,x1/3-2,’LineWidth’,1)

plot(x_plus(1),x_plus(2),’o’)

In this case it is more difficult to interpret the point x+ in the figure. However,
theory says that it is the point that



1. is a least squares solution of Ax = y, (i.e. it has, in the least squares
sense, the smallest distance to the three lines) and

2. has the smallest norm (distance to the origin).

M3. Load the function Radon example.m from the course website. Add various
amounts of noise to the sinogram and examine the effet of different filters.
You can see the possible filter choices by typing help iradon in Matlab.

Answer:

Let us first modify the file a bit to make it more suitable for doing this exercise:

im = phantom(256);

ang = [1:180];

% Set noise level

noiselevel = 0.1;

R = radon(im,ang);

R = R + noiselevel*max(abs(R(:)))*randn(size(R));

backp = iradon(R,ang,’none’);

recon = iradon(R,ang,’Ram-Lak’);

recSL = iradon(R,ang,’Shepp-Logan’);

recCS = iradon(R,ang,’Cosine’);

recHM = iradon(R,ang,’Hamming’);

recHN = iradon(R,ang,’Hann’);

% Parameter for adjusting the contrast in the images (if the images have

% negative elements, then gamma < 1 will lead to complex values in the

% images and imshow.m will give warnings but you don’t have to care about

% these)

gamma = 0.5;

% Plot all the images in the same figure

figure(1)

clf

subplot(2,4,1)

imshow(im.^gamma)

axis equal

colormap gray

title(’Original image’)

subplot(2,4,5)

imagesc(R)

axis equal

axis off

colormap gray



title(’Noisy sinogram’)

subplot(2,4,2)

imagesc(backp.^gamma)

axis equal

axis off

title(’Back-projection without filtering’)

colormap gray

subplot(2,4,3)

imshow(recon.^gamma)

axis equal

colormap gray

title(’Ram-Lak’)

subplot(2,4,4)

imshow(recSL.^gamma)

axis equal

colormap gray

title(’Shepp-Logan’)

subplot(2,4,6)

imshow(recCS.^gamma)

axis equal

colormap gray

title(’Cosine’)

subplot(2,4,7)

imshow(recHM.^gamma)

axis equal

colormap gray

title(’Hamming’)

subplot(2,4,8)

imshow(recHN.^gamma)

axis equal

colormap gray

title(’Hann’)

Testing this file e.g. with noise levels 0, 0.01 and 0.1 seems to indicate that the
noise is most efficiently filtered by Hamming and Hann filters. On the other
hand, least filtering is given by Ram-Lak.

M4. Numerical evaluation of the Fourier coefficients of our PSF. Recall
the (here non-normalized) point spread function

p(x) = (x+ a)2(x− a)2, for − a ≤ x ≤ a,

which is implemented in the Matlab file DC PSF.m. The goal of this exercise is
to observe the decay of the Fourier coefficients

p̂(n) :=
1

2π

∫ a

−a
e−inxp(x)dx, n > 0,

when n → ∞. Use a numerical quadrature (for example Simpson’s rule)
to compute p̂(n) approximately for n = 1, 2, 3, . . . , N . Try to go up to, for



example, N = 32. Note that when the frequency n grows, you will need more
quadrature points in the integration to achieve acceptable accuracy. The point
her is to examine how fast the coefficients approach zero as n grows; thus
the normalization of the point spread function plays no role (why is this?).
What can you deduce about the ill-posedness of the inverse problem Given
m = p ∗ f + ε, find f?

Answer:

Here is an example script (using composite Simpson’s rule for numerical inte-
gration):

% Parameter a of the PSF (note that it should satisfy 0<a<1/2)

a = 0.001;

% Create a uniform grid of NN points for x (note that NN should be an odd

% number in order to use (composite) Simpson’s rule)

NN = 20001;

x = linspace(-a,a,NN);

% Choose N (number of Fourier coefficients to be computed)

N = 128;

% Form the weights of the Simpson’s rule

weights = zeros(1,NN);

weights(1) = 1;

weights(NN) = 1;

weights(2:2:NN-1) = 4;

weights(3:2:NN-2) = 2;

% Compute the Fourier coefficients using (composite) Simpson’s rule

h = 2*a/(NN-1);

pn = zeros(N,1);

for n=1:N

pn(n) = h/(2*pi)*sum(weights.*exp(-1i*n*x).*DC_PSF(x,a));

end

% Plot the (absolute values of the) Fourier coefficients

figure

plot(1:N,abs(pn))

xlabel(’$$n$$’,’Interpreter’,’Latex’,’FontSize’,20)

ylabel(’$$\hat{p}(n)$$’,’Interpreter’,’Latex’,’FontSize’,20)

Running this script e.g. with a = 0.1, a = 0.01 and a = 0.001 illustrates that
the Fourier coefficients p̂(n) tend to zero faster for a larger parameter a (as
n → ∞). The normalization (or lack of it) plays no role here since it would



just mean a multiplication of each p̂(n) by a constant not depending on n and
hence it would have no effect on the speed at which the coefficients p̂(n) tend
to zero.

In terms of the inverse problem “given m = p ∗ f + ε, find f” this means that
the problem is ill-posed especially for large parameters a. Namely, note that

because p̂ ∗ f = p̂f̂ , we have

f̂(ξ) =
m̂ε(ξ)

p̂(ξ)
, (3)

where mε = m−ε. Now, if p̂(ξ) is small for large ξ’s then even small-amplitude
high-frequency components (noise) in mε get amplified, i.e. multiplied by a
large number. Then, after taking the Fourier inverse transform, we get a
probably useless reconstruction f with high oscillations.


