
Inverse Problems
(and their computational solution)

Samuli Siltanen

samuli.siltanen@helsinki.fi
http://www.siltanen-research.net

The Legendary Course
University of Helsinki, spring 2014



This my industrial-academic background

1999: PhD, Helsinki University of Technology, Finland

2000: R&D scientist at Instrumentarium Imaging

2002: Postdoc at Gunma University, Japan

2004: R&D scientist at GE Healthcare

2005: R&D scientist at Palodex Group

2006: Professor, Tampere University of Technology, Finland

2009: Professor, University of Helsinki, Finland



Finland

•PPPP

•
�
�

��

•���
��

•
•��

�
��
�•H

HH
H
HH

H
•
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Practical course information

Period III and partly IV:

Lectures
Tuesday 10-12 (Exactum D123),
Wednesday 12-14 (Exactum D123),
Friday 12-14 (Exactum B120).
Lecturer: Professor Samuli Siltanen

Exercises
Time is not yet decided
Teaching assistants: Esa Niemi &
Teemu Saksala

Final exam
Passing the final exam and complet-
ing enough exercises corresponds to
10 credit units.

Period IV:

Project work
Computational inversion projet done
in teams of two students. Results
are reported in the form of a poster
on a specific day (announced later).

The project work corresponds to 5
credit units.



All Matlab codes freely
available on a website!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects
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Godfrey Hounsfield and Allan McLeod Cormack
were the first to develop X-ray tomography

Cormack (left) and
Hounsfield (top) re-
ceived Nobel prizes
in 1979. Right: an
early tomographic
image.



Reconstruction of a function from its line integrals
was first invented by Johann Radon in 1917

f (P) = −1
π

∫ ∞

0

dFp(q)

q



Traditional X-ray tomography requires many
projection images using small angular steps

1
4π2

∫
S1

∫
R

d
ds (Rf )(θ, s)

x · θ − s
ds dθ
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A series of projects started in Finland in 2001,
aiming for a new type of low-dose 3D imaging

The goal was a mathematical algorithm with

Input: small number of digital X-ray images from any X-ray device.
Output: Three-dimensional reconstruction with high enough quality
for the clinical task at hand.

Products of Instrumentarium Imaging in 2001:



Application: dental implant planning, where a
missing tooth is replaced with an implant



Nowadays, a digital panoramic imaging device is
standard equipment at dental clinics

A panoramic dental image offers a
general overview showing all teeth
and other dento-maxillofacial struc-
tures simultaneously.

Panoramic images are not suitable
for dental implant planning because
of unavoidable geometric distortion.



We reprogram the panoramic X-ray device so that
it collects projection data by scanning
Number of projection images: 11

Angle of view: 40 degrees

Image size: 1000×1000 pixels

The detector of a panoramic device
is very narrow, so images are formed
using a scanning movement analo-
gously to a xerox machine.



This low-dose 3D imaging technique has been
commercialized by Palodex Group

The VT device has been available in
the market from year 2007.

Remarkably, a digital panoramic
imaging device, that the dental clinic
already has, becomes a 3D imaging
machine by a software update.

The core of that software update is a
computational inversion algorithm.

See http://www.vt-cube.com/



Here are example images of an actual patient.
Left: navigation image. Right: desired slice.

Kolehmainen, Vanne, S, Järven-
pää, Kaipio, Lassas & Kalke 2006,
Kolehmainen, Lassas & S 2008

Cederlund, Kalke & Welander 2009,
Hyvönen, Kalke, Lassas, Setälä & S
2010, U.S. patent 7269241



The radiation dose of the VT device is the lowest
among 3D dental imaging modalities

Modality µSv
Head CT 2100
CB Mercuray 558
i-Cat 193
NewTom 3G 59
VT device 13

Ludlow, Davies-Ludlow, Brooks &
Howerton 2006
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We recently started to study EIT for imaging
changes in vocal folds due to excessive voice use

Sao Paulo, February 27, 2013 Laukkanen
León
Lima
Liu
Moura
Seppänen
S



The most promising use of EIT is detection of
breast cancer in combination with mammography

ACT4 and mammography devices Radiolucent electrodes

Cancerous tissue is up to four times more conductive than healthy breast
tissue [Jossinet 1998]. The above experiment by David Isaacson’s team
measures 3D X-ray mammograms and EIT data at the same time.



Which of these three breasts have cancer?



Spectral EIT can detect cancerous tissue

[Kim, Isaacson, Xia, Kao, Newell & Saulnier 2007]



EIT can be used for nondestructive testing:
here for crack detection in concrete structures

[Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010]
[Karhunen, Seppänen, Lehikoinen, Monteiro, Kaipio, Blunt, Hyvönen]



Electrical impedance tomography (EIT)
is an emerging medical imaging technique

Feed electric currents through
electrodes. Measure the re-
sulting voltages. Repeat the
measurement for several cur-
rent patterns.
Reconstruct distribution of

electric conductivity inside the
patient. Different tissues have
different conductivities, so EIT
gives an image of the patient’s
inner structure.

EIT is a harmless and pain-
less imaging method suitable
for long-term monitoring.



This talk concentrates on applications of EIT
to chest imaging

Medical applications: monitoring
cardiac activity, lung function, and
pulmonary perfusion. Also, elec-
trocardiography (ECG) can be en-
hanced using knowledge about
conductivity distribution.



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 2θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 3θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 4θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 5θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 16θ

Measure the resulting voltages at the 32 electrodes



The D-bar method works for real EIT data, such
as laboratory phantoms and in vivo human data

Saline and agar phantom Reconstruction (R = 4)

[Isaacson, Mueller, Newell & S 2004]
[Montoya 2012]
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We illustrate the ill-posedness of EIT
using a simulated example

σ1

σ2



We apply the voltage distribution f (θ) = cos θ
at the boundary of the two different phantoms

σ1

σ2

u1
θ

u2



The measurement is the distribution of
current through the boundary

σ1

σ2
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θ

u2
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The current data are very similar,
although the conductivities are quite different
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Let us apply the more oscillatory distribution
f (θ) = cos 2θ of voltage at the boundary

σ1

σ2

u1

u2



The measurement is again the distribution of
current through the boundary
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The current distribution measurements
are almost the same
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EIT is an ill-posed problem: big differences in
conductivity cause only small effect in data

σ1

σ2

cos θ

cos 2θ

cos 3θ

cos 4θ

cos 5θ

cos 6θ



EIT is an ill-posed problem: noise in data causes
serious difficulties in interpreting the data
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σ2

cos θ
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cos 3θ

cos 4θ

cos 5θ

cos 6θ
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There exists a nonlinear Fourier transform
adapted to electrical impedance tomography
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The nonlinear Fourier transform can be recovered
from infinite-precision EIT measurements

Λσ -
BIE
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Nonlinear IFFT

6
Ideal
measurement

[Nachman 1996]



Measurement noise prevents the recovery of the
nonlinear Fourier transform at high frequencies
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Nonlinear IFFT
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Practical
measurement



We truncate away the bad part in the transform;
this is a nonlinear low-pass filter

-
BIE

6
Practical
measurement

-
Lowpass



There is currently only one regularized method for
reconstructing the full conductivity distribution

-
BIE

?

Nonlinear
IFFT

6
Practical
measurement

-
Lowpass

[S, Mueller & Isaacson 2000]
[Knudsen, Lassas, Mueller & S 2009]



D-bar reconstruction of in vivo chest data

(Loading DBarPerfMovie.avi)

[Montoya & Mueller 2012]


Dbar_chestvideo.mpg
Media File (video/mpeg)
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Inverse problem = interpretation of an indirect
measurement modelled by a forward map F

Consider the measurement model
m = F (x) + ε. We want to know
x , but all we can do is measure m
that depends indirectly on x .

The practical measurement m can
be thought of as infinite-precision
data F (x) corrupted with additive
noise ε.

Model space X Data space Y

D(F ) F (D(F ))

x
F (x)

m
F



Ill-posed inverse problems are defined
as opposites of well-posed direct problems

Hadamard: a problem is well-posed
if the following conditions hold:

1. A solution exists,
2. The solution is unique,
3. The dependence of the solution
on the input is continuous.

Well-posed direct problem: input
x , find infinite-precision data F (x).

Ill-posed inverse problem: input
noisy data m = F (x) + ε, recover x .



The solution of an inverse problem is a
set of instructions for recovering x stably from m

Those instructions need to be

(i) confirmed by rigorous mathemat-
ical analysis, and

(ii) implementable as an effective
computational algorithm.

Since the forward map has no con-
tinuous inverse, it is impossible to
recover x stably from m alone. The
insufficient measurement data needs
to be complemented by a priori
knowledge.



Uniqueness: can two different objects produce
the same infinite-precision data?

Ill-posedness means that the forward
map F does not have a continu-
ous inverse. Therefore, recovery of
x from infinite-precision data F (x) is

unstable even if F is one-to-one.
Furthermore, in general the data is
not in the range: m 6∈ F (D(F )).

Model space X Data space Y

D(F ) F (D(F ))

x

x̃

F (x)=F (x̃)

m

F

F



Regularization means constructing a continuous
map Γα : Y → X that inverts F approximately

The reconstruction Γα(δ)(m) needs
to approach x along a continuous
path as the noise level δ → 0.

The solution of an inverse problem is
to design and implement the map Γα

so that it contains appropriate prior
information.

Model space X Data space Y

D(F ) F (D(F ))

x

F (x)

m
F

δ

Γα
Γα(m)



Goals of the course

1. Learn how to write a practical inverse problem in matrix form:
m = Af + ε

2. Learn how to detect ill-posedness from a matrix A using
Singular Value Decomposition

3. Learn how to overcome ill-posedness by regularization
4. Acquire skills to solve practical inverse problems using Matlab
5. Learn to report your scientific findings in writing
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