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[T1.] Answer

Let U be an orthogonal (n × n)-matrix. Let (ei)
n
i=i be the standard or-

thonormal base for Rn. Write matrix U with column vectors (U1, . . . , Un).
Since we assume that UT = U−1 it holds that

I = UUT = [Ui · Uj]⇒ Ui · Uj = δij. (1)

Here [Ui · Uj] is such a matrix that its elements are Ui · Uj and δij is the
Kronecker delta. Therefore we know that the vectors (U1, . . . , Un) are or-
thonormal. Let y =

∑n
i=1 yiei ∈ Rn. Remember the bilinearity of inner

product and calculate the norm

||Uy||2 = Uy · Uy =
n∑

i.j=1

yiyj(Uei · Uej) =
n∑

i.j=1

yiyj(Ui · Uj) =
n∑

i=1

y2i = ||y||2.

(2)
Taking the square roots from the first and the last part of equation (2) we
have proven the claim.

[T2.] Answer

We first recall that a real square matrix S is self-adjoint iff it is symmet-
ric i.e. S = ST . Let A ∈ M(R, k, n) i.e. A is a real (k × n)−matrix.
Calculate

(ATA)T = AT (AT )T = ATA (3)

and notice that equation (3) shows that square matrix (ATA) ∈ M(R, k, k)
is selfadjoint.

Let S : Rk → Rk be that selfadjoint linear mapping which has matrix rep-
resentation ATA wiht respect to standard euclidean basis (ei)

k
i=1. Due the

Spectral theorem of self-adjoint linear mappings it now holds that there ex-
ists an orthonormal basis (ẽi)

k
i=1 of Rk s.t. each ẽi is an eigen vector of linear



mapping S and in this basis L has matrix representation of diagonal ma-
trix D = diag(λ1, . . . , λn) and λi is an eigen value related to vector ẽi. Let
V = (ẽ1, . . . , ẽn) which is an orthogonal matrix. Now it also holds that

ATA = V DV T . (4)

Let L : Rk → Rn be that linear mapping which has matrix representation A
with respect to standard orthonormal basis (ei)

k
i=1 of Rk and (fi)

n
i=1 of Rn.

We say that linear mapping L∗ : Rn → Rk is an adjoint of L if the following
holds for all u ∈ Rk and v ∈ Rn

L(u) · v = u · L∗(v). (5)

Using matrix convention for linear mapping L in equation (5) it is easy to
see that L∗ = AT .

Remember formula (5) and calculate

L(ẽi) · L(ẽj) = ẽi · L∗(L(ẽj)) = ẽi · S(ẽj) = λj ẽi · ẽj = λjδij. (6)

By previous equation it holds that λj ≥ 0. Reorder basis (ẽi)
k
i=1 if necessary

and choose l ≤ min{k, n} s.t. λi ≥ λi+1 > 0 for every i ≤ l − 1. Define

f̃i :=
L(ẽi)

||L(ẽi)||
=
L(ẽi)√
λi

(7)

and note that by formula (6) set (f̃i)
l
i=1 is orthonormal. Next choose vectors

(f̃i)
n
i=l s.t. set (f̃i)

n
i=1 is an orthonormal basis for Rn. By formula (6) it also

holds for any i ∈ l + 1, . . . , k that

L(ẽi) = 0,

Finally choose that σi =
√
δi. Note that, if we now choose [Lij] as [Aij] in

exercise paper, we have shown that with respect to orthonormal basis (ẽi)
k
i=1

and (f̃i)
n
i=1 [Lij] is the matrix of mapping L. If U = (f̃1, . . . , f̃n) we have also

shown that
A = U [Lij]V

T .

[T3.] Answer

Let

f =

 f7 f8 f9
f4 f5 f6
f1 f2 f3





be the attenuation values of given square and m = (m1, . . .m6) ∈ R6 our
maesure data of 6 X-ray lines. Here we think that the bottommost line of
the frist picture is L1 and L6 is the topmost line of the second picture. Next
we have to find the matrix A ∈M(R, 9, 6) s.t.

m = Af. (8)

We use the following facts to construct A.

• The length of the side of each pixel is 1.

• Entry Aij of matrix A is the distance that ray Li travels in the jth
pixel.

Looking the fist picture we note that if ray Li travels through jth pixel the
corresponding number

Aij =

√
12 +

(1

3

)2
=

√
10

9
=

√
10

3
.

Looking the second picture we note that if ray Li travels through jth pixel
the corresponding number

Aij =
√

12 + 12 =
√

2.

Let us build the rows 1, 4 and 5 in detail. Ray L1 travels through pixels 1,
2 and 3. Therefore we have that row

A1 = (A1,j)
9
J=1 = (

√
10

3
,

√
10

3
,

√
10

3
, 0, . . . , 0).

Ray L4 travels through pixels 2 and 6. Therefore we have that row

A4 = (A1,j)
9
J=1 = (0,

√
2, 0, 0, 0,

√
2, 0, 0, 0).

Ray L5 travels through pixels 1, 5 and 9. Therefore we have that row

A5 = (A1,j)
9
J=1 = (

√
2, 0, 0, 0,

√
2, 0, 0, 0,

√
2).

Now it holds that matrix

A =



√
10
3

√
10
3

√
10
3

0 0 0 0 0 0

0 0 0
√
10
3

√
10
3

√
10
3

0 0 0

0 0 0 0 0 0
√
10
3

√
10
3

√
10
3

0
√

2 0 0 0
√

2 0 0 0√
2 0 0 0

√
2 0 0 0

√
2

0 0 0
√

2 0 0 0
√

2 0





and

(m1,m2,m3,m4,m5,m6) =



√
10
3

√
10
3

√
10
3

0 0 0 0 0 0

0 0 0
√
10
3

√
10
3

√
10
3

0 0 0

0 0 0 0 0 0
√
10
3

√
10
3

√
10
3

0
√

2 0 0 0
√

2 0 0 0√
2 0 0 0

√
2 0 0 0

√
2

0 0 0
√

2 0 0 0
√

2 0





f1
f2
f3
f4
f5
f6
f7
f8
f9


.

[M1.] Answer

After running the files DC1 cont data comp.m, DC2 discrete data comp.m

and DC4 truncSVD comp.m one has the matrices U, D and V, i.e. the SVD of
A, stored in the Matlab Workspace. The condition number of A can then
be computed e.g. by the command D(1,1)/D(n,n) either in the m-file
DC4 truncSVD comp.m or in the Command Window. The condition numbers
for resolutions n=100,200,300,400 are 1.0944e+03, 5.2812e+04, 1.0201e+05

and 1.4951e+06, respectively. In other words, the condition number of A be-
comes larger as n grows. This means that the more precisely one models
(discretizes) the convolution, the more ill-posed deconvolution problem one
gets!

Note: The condition number of a matrix can also be computed by Mat-
lab’s built-in function cond.m, i.e. the same condition numbers as above can
be obtained using the command cond(A). (However, since we already have
computed the SVD of A, it is computationally more efficient to compute the
condition number as D(1,1)/D(n,n).)

[M2.] Answer

(b) (Note that here the diagonal matrix D is not a square matrix as in the
previous exercise.)

One can compute the condition number of A by, e.g., the command
D(1,1)/D(min(size(D)),min(size(D))) to get 1.0152e+05.



(c) The minimum relative error is 64%. (If you modify the code to compute
the relative error for every number of singular vectors, you will get a
minimum relative error of 63.4954% with 500 singular vectors.)

[M3.] Answer

(a) Simply replace the number 180 by number 90 on line 23 in XRM1 matrix comp.m

and on line 27 in XRM3 NoCrimeData comp.m.

(b) Compute the condition number in the same manner as in M2(b) to get
cond(A)
=9.9649e+05. Compared to M2(b), the condition number here is larger,
meaning that the limited angle (90◦) CT problem is more ill-posed than
the “corresponding” full angle (180◦) problem.

(c) The minimum relative error is 74%, obtained by 220, 293 or 366 singu-
lar vectors. (If you modify the code to compute the relative error for
every number of singular vectors, you will get a minimum relative error
of 73.5357% with 230 singular vectors). Compared to M2(b), the min-
imum relative error here is larger. Also, the minimum error is attained
at a lower number of singular vectors.

The reconstruction is arguably worse in this limited-angle case. It
contains certain details of the phantom but certain details might be
totally missing; more precisely, shapes in the direction of the x-ray
projections are reconstructed relatively well while shapes perpendicular
to the direction of the x-rays are missing or poorly reconstructed.

In the limited-angle case the singular vectors are not as symmetric as
they are in the full-angle case, rather they seem to be “stretched” in
the direction of the x-rays, similarly to the shapes in the limited-angle
reconstructions.


