Inverse problems course, spring 2014 Exercise 2 solutions (January 28-31, 2014)

University of Helsinki
Department of Mathematics and Statistics
Samuli Siltanen, Esa Niemi and Teemu Saksala

## [T1.] Answer

Let $U$ be an orthogonal $(n \times n)$-matrix. Let $\left(e_{i}\right)_{i=i}^{n}$ be the standard orthonormal base for $\mathbb{R}^{n}$. Write matrix $U$ with column vectors $\left(U_{1}, \ldots, U_{n}\right)$. Since we assume that $U^{T}=U^{-1}$ it holds that

$$
\begin{equation*}
I=U U^{T}=\left[U_{i} \cdot U_{j}\right] \Rightarrow U_{i} \cdot U_{j}=\delta_{i j} . \tag{1}
\end{equation*}
$$

Here $\left[U_{i} \cdot U_{j}\right]$ is such a matrix that its elements are $U_{i} \cdot U_{j}$ and $\delta_{i j}$ is the Kronecker delta. Therefore we know that the vectors $\left(U_{1}, \ldots, U_{n}\right)$ are orthonormal. Let $y=\sum_{i=1}^{n} y_{i} e_{i} \in \mathbb{R}^{n}$. Remember the bilinearity of inner product and calculate the norm
$\|U y\|^{2}=U y \cdot U y=\sum_{i . j=1}^{n} y_{i} y_{j}\left(U e_{i} \cdot U e_{j}\right)=\sum_{i . j=1}^{n} y_{i} y_{j}\left(U_{i} \cdot U_{j}\right)=\sum_{i=1}^{n} y_{i}^{2}=\|y\|^{2}$.
Taking the square roots from the first and the last part of equation (2) we have proven the claim.
[T2.] Answer
We first recall that a real square matrix $S$ is self-adjoint iff it is symmetric i.e. $S=S^{T}$. Let $A \in M(\mathbb{R}, k, n)$ i.e. $A$ is a real $(k \times n)$-matrix. Calculate

$$
\begin{equation*}
\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A \tag{3}
\end{equation*}
$$

and notice that equation (3) shows that square matrix $\left(A^{T} A\right) \in M(\mathbb{R}, k, k)$ is selfadjoint.

Let $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be that selfadjoint linear mapping which has matrix representation $A^{T} A$ wiht respect to standard euclidean basis $\left(e_{i}\right)_{i=1}^{k}$. Due the Spectral theorem of self-adjoint linear mappings it now holds that there exists an orthonormal basis $\left(\widetilde{e}_{i}\right)_{i=1}^{k}$ of $\mathbb{R}^{k}$ s.t. each $\widetilde{e}_{i}$ is an eigen vector of linear
mapping $S$ and in this basis $L$ has matrix representation of diagonal ma$\operatorname{trix} D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\lambda_{i}$ is an eigen value related to vector $\widetilde{e}_{i}$. Let $V=\left(\widetilde{e}_{1}, \ldots, \widetilde{e}_{n}\right)$ which is an orthogonal matrix. Now it also holds that

$$
\begin{equation*}
A^{T} A=V D V^{T} \tag{4}
\end{equation*}
$$

Let $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be that linear mapping which has matrix representation $A$ with respect to standard orthonormal basis $\left(e_{i}\right)_{i=1}^{k}$ of $\mathbb{R}^{k}$ and $\left(f_{i}\right)_{i=1}^{n}$ of $\mathbb{R}^{n}$. We say that linear mapping $L^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is an adjoint of $L$ if the following holds for all $u \in \mathbb{R}^{k}$ and $v \in \mathbb{R}^{n}$

$$
\begin{equation*}
L(u) \cdot v=u \cdot L^{*}(v) \tag{5}
\end{equation*}
$$

Using matrix convention for linear mapping $L$ in equation (5) it is easy to see that $L^{*}=A^{T}$.

Remember formula (5) and calculate

$$
\begin{equation*}
L\left(\widetilde{e}_{i}\right) \cdot L\left(\widetilde{e}_{j}\right)=\widetilde{e}_{i} \cdot L^{*}\left(L\left(\widetilde{e}_{j}\right)\right)=\widetilde{e}_{i} \cdot S\left(\widetilde{e}_{j}\right)=\lambda_{j} \widetilde{e}_{i} \cdot \widetilde{e}_{j}=\lambda_{j} \delta_{i j} . \tag{6}
\end{equation*}
$$

By previous equation it holds that $\lambda_{j} \geq 0$. Reorder basis $\left(\widetilde{e_{e}}\right)_{i=1}^{k}$ if necessary and choose $l \leq \min \{k, n\}$ s.t. $\lambda_{i} \geq \lambda_{i+1}>0$ for every $i \leq l-1$. Define

$$
\begin{equation*}
\widetilde{f}_{i}:=\frac{L\left(\widetilde{e}_{i}\right)}{\left\|L\left(\widetilde{e}_{i}\right)\right\|}=\frac{L\left(\widetilde{e}_{i}\right)}{\sqrt{\lambda_{i}}} \tag{7}
\end{equation*}
$$

and note that by formula (6) set $\left(\widetilde{f}_{i}\right)_{i=1}^{l}$ is orthonormal. Next choose vectors $\left(\widetilde{f}_{i}\right)_{i=l}^{n}$ s.t. set $\left(\widetilde{f}_{i}\right)_{i=1}^{n}$ is an orthonormal basis for $\mathbb{R}^{n}$. By formula (6) it also holds for any $i \in l+1, \ldots, k$ that

$$
L\left(\widetilde{e}_{i}\right)=0
$$

Finally choose that $\sigma_{i}=\sqrt{\delta_{i}}$. Note that, if we now choose $\left[L_{i j}\right]$ as $\left[A_{i j}\right]$ in exercise paper, we have shown that with respect to orthonormal basis $\left(\widetilde{e}_{i}\right)_{i=1}^{k}$ and $\left(\widetilde{f}_{i}\right)_{i=1}^{n}\left[L_{i j}\right]$ is the matrix of mapping $L$. If $U=\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{n}\right)$ we have also shown that

$$
A=U\left[L_{i j}\right] V^{T}
$$

[T3.] Answer
Let

$$
\mathbf{f}=\left(\begin{array}{lll}
f_{7} & f_{8} & f_{9} \\
f_{4} & f_{5} & f_{6} \\
f_{1} & f_{2} & f_{3}
\end{array}\right)
$$

be the attenuation values of given square and $\mathbf{m}=\left(m_{1}, \ldots m_{6}\right) \in \mathbb{R}^{6}$ our maesure data of 6 X -ray lines. Here we think that the bottommost line of the frist picture is $L_{1}$ and $L_{6}$ is the topmost line of the second picture. Next we have to find the matrix $\mathbf{A} \in M(\mathbb{R}, 9,6)$ s.t.

$$
\begin{equation*}
\mathrm{m}=\mathrm{Af} . \tag{8}
\end{equation*}
$$

We use the following facts to construct $\mathbf{A}$.

- The length of the side of each pixel is 1 .
- Entry $A_{i j}$ of matrix $\mathbf{A}$ is the distance that ray $L_{i}$ travels in the jth pixel.

Looking the fist picture we note that if ray $L_{i}$ travels through $j^{\text {th }}$ pixel the corresponding number

$$
A_{i j}=\sqrt{1^{2}+\left(\frac{1}{3}\right)^{2}}=\sqrt{\frac{10}{9}}=\frac{\sqrt{10}}{3} .
$$

Looking the second picture we note that if ray $L_{i}$ travels through $j^{\text {th }}$ pixel the corresponding number

$$
A_{i j}=\sqrt{1^{2}+1^{2}}=\sqrt{2} .
$$

Let us build the rows 1,4 and 5 in detail. Ray $L_{1}$ travels through pixels 1 , 2 and 3. Therefore we have that row

$$
A_{1}=\left(A_{1, j}\right)_{J=1}^{9}=\left(\frac{\sqrt{10}}{3}, \frac{\sqrt{10}}{3}, \frac{\sqrt{10}}{3}, 0, \ldots, 0\right)
$$

Ray $L_{4}$ travels through pixels 2 and 6 . Therefore we have that row

$$
A_{4}=\left(A_{1, j}\right)_{J=1}^{9}=(0, \sqrt{2}, 0,0,0, \sqrt{2}, 0,0,0) .
$$

Ray $L_{5}$ travels through pixels 1,5 and 9 . Therefore we have that row

$$
A_{5}=\left(A_{1, j}\right)_{J=1}^{9}=(\sqrt{2}, 0,0,0, \sqrt{2}, 0,0,0, \sqrt{2})
$$

Now it holds that matrix

$$
\mathbf{A}=\left(\begin{array}{cccccccc}
\frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{30} & \frac{\sqrt{10}}{3} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right)=\left(\begin{array}{ccccccccc}
\frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} & \frac{\sqrt{10}}{3} \\
0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\
\sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} \\
0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7} \\
f_{8} \\
f_{9}
\end{array}\right) .
$$

[M1.] Answer

After running the files DC1_cont_data_comp.m, DC2_discrete_data_comp.m and DC4_truncSVD_comp.m one has the matrices U, D and V, i.e. the SVD of A, stored in the Matlab Workspace. The condition number of A can then be computed e.g. by the command $D(1,1) / D(n, n)$ either in the $m$-file DC4_truncSVD_comp.m or in the Command Window. The condition numbers for resolutions $\mathrm{n}=100,200,300,400$ are $1.0944 \mathrm{e}+03,5.2812 \mathrm{e}+04,1.0201 \mathrm{e}+05$ and $1.4951 \mathrm{e}+06$, respectively. In other words, the condition number of A becomes larger as n grows. This means that the more precisely one models (discretizes) the convolution, the more ill-posed deconvolution problem one gets!

Note: The condition number of a matrix can also be computed by Matlab's built-in function cond.m, i.e. the same condition numbers as above can be obtained using the command cond(A). (However, since we already have computed the SVD of A, it is computationally more efficient to compute the condition number as $D(1,1) / D(n, n)$.)

## [M2.] Answer

(b) (Note that here the diagonal matrix D is not a square matrix as in the previous exercise.)
One can compute the condition number of A by, e.g., the command $D(1,1) / D(\min (\operatorname{size}(D)), \min (\operatorname{size}(D)))$ to get $1.0152 \mathrm{e}+05$.
(c) The minimum relative error is $64 \%$. (If you modify the code to compute the relative error for every number of singular vectors, you will get a minimum relative error of $63.4954 \%$ with 500 singular vectors.)
[M3.] Answer
(a) Simply replace the number 180 by number 90 on line 23 in XRM1 matrix_comp.m and on line 27 in XRM3_NoCrimeData_comp.m.
(b) Compute the condition number in the same manner as in M2(b) to get cond $(A)$
$=9.9649 \mathrm{e}+05$. Compared to M2(b), the condition number here is larger, meaning that the limited angle ( $90^{\circ}$ ) CT problem is more ill-posed than the "corresponding" full angle ( $180^{\circ}$ ) problem.
(c) The minimum relative error is $74 \%$, obtained by 220,293 or 366 singular vectors. (If you modify the code to compute the relative error for every number of singular vectors, you will get a minimum relative error of $73.5357 \%$ with 230 singular vectors). Compared to M2(b), the minimum relative error here is larger. Also, the minimum error is attained at a lower number of singular vectors.

The reconstruction is arguably worse in this limited-angle case. It contains certain details of the phantom but certain details might be totally missing; more precisely, shapes in the direction of the x-ray projections are reconstructed relatively well while shapes perpendicular to the direction of the x-rays are missing or poorly reconstructed.
In the limited-angle case the singular vectors are not as symmetric as they are in the full-angle case, rather they seem to be "stretched" in the direction of the x-rays, similarly to the shapes in the limited-angle reconstructions.

