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Theoretical exercises:

T1. Define a function g : R→ R by

g(x) =

{
1 for 0.4 ≤ x ≤ 0.6,
0 otherwise.

Compute the function g ∗ g analytically (by hand), where

(g ∗ g)(x) =

∫ ∞
−∞

g(x′)g(x− x′) dx′.

Outside which interval [a, b] ⊂ R is (g ∗ g)(x) = 0?

Answer

Using the definition of convolution and function g we get

(g ∗ g)(y) =

∫ ∞
−∞

g(x)g(y − x) dx =

∫ 0.6

0.4

g(y − x) dx.

If we do a substitution x 7→ −x+ y we get

(g ∗ g)(y) = −
∫ −0.6+y

−0.4+y

g(x) dx =

∫ −0.4+y

−0.6+y

g(x) dx.

From this formula we can deduce that, if y < 0.8 or y > 1.2 then (g∗g)(y) = 0.
So (g ∗ g)(y) = 0 outside interval [0.8, 1.2].

If y ∈ [0.8, 1.0], we get that

(g ∗ g)(y) =

∫ −0.4+y

−0.6+y

g(x) dx =

∫ −0.4+y

0.4

g(x) dx = −0.4 + y − 0.4 = y − 0.8.

If y ∈ [1.0, 1.2], we get that

(g ∗ g)(y) =

∫ −0.4+y

−0.6+y

g(x) dx =

∫ 0.6

−0.6+y

g(x) dx = 1.2− y.

Putting everything together we have shown that

(g ∗ g)(y) =


0, y < 0.8

y − 0.8, y ∈ [0.8, 1.0]
1.2− y, y ∈ [1.0, 1.2]

0, y > 1.2



T2. Let the discrete point spread function p ∈ R5 and the vector f ∈ R10 be
defined by

p̃ = [p̃−2, p̃−1, p̃0, p̃1, p̃2]
T = [1, 1, 1, 1, 1]T ,

f = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]
T = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]T .

Compute the discrete convolution vector (p̃ ∗ f) ∈ R10 by

(p̃ ∗ f)j =
2∑

`=−2

p̃`fj−`,

where fj−` is defined using periodic boundary conditions for the cases j−` < 1
and j − ` > n.

Answer

Let’s calculate the first one in detail.

(p̃ ∗ f)1 =
2∑

`=−2

p̃`f1−` = p̃−2f3 + p̃−1f2 + p̃0f1 + p̃1f0 + p̃2f−1.

Due the periodic boundary condition we have that f0 = f10 and f−1 = f9.
Making these substitutions we get

(p̃ ∗ f)1 = p̃−2f3 + p̃−1f2 + p̃0f1 + p̃1f10 + p̃2f9 = 0 + 0 + 0 + 0 + 0 = 0.

Next we give a list of correct answers.(
(p̃ ∗ f)1 = 0 (p̃ ∗ f)2 = 0 (p̃ ∗ f)3 = 1 (p̃ ∗ f)4 = 2 (p̃ ∗ f)5 = 2
(p̃ ∗ f)6 = 2 (p̃ ∗ f)7 = 2 (p̃ ∗ f)8 = 1 (p̃ ∗ f)9 = 0 (p̃ ∗ f)10 = 0

)
T3. Take ∆x = 1

10
and compute the normalized point spread function

p =
(

∆x
2∑

j=−2

p̃j

)−1
p̃.

Compute the discrete convolution vector (p̃ ∗ f) ∈ R10 with vector f ∈ R10

as in exercise T2 except that f1 = 2. Be careful with the periodic boundary
condition!

Answer

p =
(

∆x
2∑

j=−2

p̃j

)−1
p̃ =

1
1
10

5
(1, 1, 1, 1, 1)T = (2, 2, 2, 2, 2)T .

In this case function f look’s like

f = [2, 0, 0, 0, 1, 1, 0, 0, 0, 0]T .



Let’s calculate number (p̃ ∗ f)1 in detail. Using the vectors given for this
problem and remembering the periodic boundary condition we get

(p̃ ∗ f)1 = p̃−2f3 + p̃−1f2 + p̃0f1 + p̃1f0 + p̃2f−1 = 0 + 0 + 2 + 0 + 0 = 2.

Next we give a list of correct answers.(
(p̃ ∗ f)1 = 2 (p̃ ∗ f)2 = 2 (p̃ ∗ f)3 = 3 (p̃ ∗ f)4 = 2 (p̃ ∗ f)5 = 2
(p̃ ∗ f)6 = 2 (p̃ ∗ f)7 = 2 (p̃ ∗ f)8 = 1 (p̃ ∗ f)9 = 2 (p̃ ∗ f)10 = 2

)
Matlab exercises:

M1. Download the following files from the course webpage:
DC PSF.m

DC target.m

DC convmtx.m

DC1 cont data comp.m

DC1 cont data plot.m

DC2 discretedata comp.m

DC2 discretedata plot.m

(a) Repeat the experiment done at the lecture: choose n = 32, n = 64, n
= 128 and n = 256 in line 12 of the file DC2 discretedata comp.m and
observe how the approximation error becomes smaller. (In other words,
the blue dots in the image entitled Data with inverse crime get closer to
the red function as n grows.)

(b) Now choose a to be smaller than 0.04 in line 10 of file DC1 cont data comp.m

and run it. Repeat the experiment in (i). Is the convergence of blue dots
to the red function slower or faster, especially near the discontinuities of
the original signal? Why is this?

(c) Now choose a to be greater than 0.04 in line 10 of file DC1 cont data comp.m

and run it. Repeat the experiment in (i). Is the convergence of blue dots
to the red function slower or faster? Why?

Answer

Choosing a = {0.04, 0.035, 0.03, 0.025} and n = {32, 64, 128, 256} one
can see a difference especially with n = {32, 64}. It seems that the blue
dots converge to red line slower if a get’s smaller.

Choosing a = {0.04, 0.045, 0.05, 0.055} and n = {32, 64, 128, 256} one
can see a difference especially with n = {32, 64}. It seems that the blue
dots converge to red line faster if a get’s larger.

The red function is greated analytically by formula

(ψa ∗ f)(y) =

∫ ∞
−∞

ψa(x)f(x− y)dx, (1)



where

ψa(x) =

{
Ca(x− a)2(x+ a)2, |x| ≤ a

0, |x| > a
(2)

is SPF. If parameter a get’s smaller, we can see from definition of SPF
that the support of PSF goes smaller. It is shown in a basic course of
Real analysis that

(ψa ∗ f) ∈ C1(R) and |f − (ψa ∗ f)|L1 −→ 0 if a −→ 0.

In other words this means that (ψa ∗ f) approximates function f better
and better as a get’s smaller.

If we now consider the discrete setting, where variable n is the num-
ber of points in which we calculate f . Considering the definitions made
in the textbook we see that Discrete point spread function, which is ma-
trix (2.14) in textbook, has more zero elements for fixed n if a decreases.
Let f(n) be the vector of formula (2.7) and P(a, n) be the point spread
matrix with respect to parameters a and n. The blue dots are the vector

1

n
P(a, n)f(n). (3)

If we pick one entry, say the jth one, of vector in line (3) we have formula

1

n

n∑
`=1

p(a)`,jf`. (4)

For a big enough we see, that the sum (4) approximates the Riemannian
sum

1

n

n∑
`=1

ψa(x`)f(x` − xj).

better. This holds due the construction of P(a, n) and since we have a
crid where distance between neighboring points is constant ∆x = 1/n. It
is shown in the basic course of analysis that next formula holds.

(ψa ∗ f)(xj) =

∫ ∞
−∞

ψa(x)f(x− xj)dx ∼
1

n

n∑
`=1

ψa(x`)f(x` − xj). (5)

There fore for a bigger parameter a the blue dots approximate the red
function better if we keep the parameter n intact.

On second thought there is a critical point where the situation above
doesn’t work anymore. Suppose that a < ∆x = 1

n
. Then it holds

that ν = 0 and P̃(a, n) = diag(ψa(0), . . . , ψa(0)), where ψa(0) = Caa
4.

Our Matlab code does not how ever use P̃(a, n), but the normalized
P(a, n) = diag(p, . . . , p), where

p = (∆xp̃)−1p̃ = (∆x)−1.



If we now consider vector (3) in our situation we note that

1

n
P(a, n)f(n) = ∆x diag((∆x)−1, . . . , (∆x)−1)f(n) = f(n).

There fore we get perfect results.


