FUNKTIONAALIANALYYSI II, 2014
EXERCISES, SET 3
TO BE RETURNED ON MON. APRIL 14th AT LATEST, PERSONALLY OR TO THE MAILBOX OF J.T.

1. Given $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, show that $f * T \in C^{\infty}\left(\mathbb{R}^{n}\right)$ (cf. Theorem 4.20 of the lecture notes).
2. Prove that, if $\varepsilon \rightarrow 0$, then $J_{\varepsilon} \rightarrow \delta_{0}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, where J_{ε} is the mollifier of Chapter 5 of the lecture notes. Given $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, show also that $J_{\varepsilon} * T \rightarrow T$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, if $\varepsilon \rightarrow 0$ and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is endowed with the weak topology. This amounts to showing that

$$
\left\langle\varphi, J_{\varepsilon} * T\right\rangle \rightarrow\langle\varphi, T\rangle
$$

for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
3. Let $\Omega:=] 0, \infty[\subset \mathbb{R}$. Show that the following inclusions are strict, i.e., the spaces are not the same: $C^{1}(\bar{\Omega}) \subset C_{B}^{1}(\Omega) \subset C^{1}(\Omega)$.
4. For all $\lambda, 0<\lambda<1$, construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is an element of the Hölder-space $C^{0, \lambda}(\overline{\mathbb{R}})$ but not that of $C^{1}(\overline{\mathbb{R}})$.
5. Let $a>0$ and $b>0$, and $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$, and

$$
f(x):=x^{-a} \quad, \quad g(x):=x^{-b}
$$

for $|x| \leq 1$, and $f(x)=g(x)=0$ for $|x|>1$.
What does the Young inequality imply about the existence of the function $f * g$ as an element in the space $L^{r}(\mathbb{R})$ for different a, b and $1 \leq r \leq \infty$?
6. Show that the operator P defined just before Theorem 5.12 in the lecture notes is an isometry from the Sobolev space onto a closed subspace of X.
7. Show by an example, that $W_{0}^{1,1}(\Omega) \neq W^{1,1}(\Omega)$ for $\Omega:=\{|x|<1\} \subset \mathbb{R}^{2}$.
8. Using the definition, show that the open unit ball of \mathbb{R}^{2} has the cone property.
9. For which values of $a \in \mathbb{R}$ does the function $|x|^{a}=\left(x_{1}^{2}+x_{2}^{2}\right)^{a / 2}$ belong to the Sobolev space $W^{1, p}(\omega)$, where ω is the open unit ball $\{|x|<1\}$ of \mathbb{R}^{2} and $1 \leq p \leq \infty$? Also, the same for the function $|x|^{a}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{a / 2}$, the Sobolev space $W^{1, p}(\Omega)$, and Ω as the open unit ball of \mathbb{R}^{3}.

