Exercises, Fourier transform and Hausdorff dimension, spring 2014

1. Prove the Riemann-Lebesgue lemma: $\lim _{|\xi| \rightarrow \infty} \widehat{f}(\xi)=0$ if $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

In the following μ and ν are finite Borel measures on \mathbb{R}^{n}.
2. Let ψ be a non-negative continuous function on \mathbb{R}^{n} with $\operatorname{spt} \psi \subset B(0,1)$ and $\int \psi=1$. Let $\psi_{\epsilon}(x)=\epsilon^{-n} \psi(x / \epsilon), x \in \mathbb{R}^{n}, \epsilon>0$. Prove that $\psi_{\epsilon} * \mu \rightarrow \mu$ weakly and $\widehat{\psi_{\epsilon} * \mu} \rightarrow \widehat{\mu}$ as $\epsilon \rightarrow 0$.
3. Prove the formula $\widehat{\mu * \nu}=\widehat{\mu} \widehat{\nu}$.
4. Prove the formula $\int \hat{f} \overline{\hat{g}} d \mu=\int(\widehat{\mu} * \bar{g}) f$.
5. What is the Fourier transform of the function f, as a distribution, when a) $f(x)=1$ for all $x \in \mathbb{R}$, b) $f(x)=x$ for all $x \in \mathbb{R}$, c) $f(x)=x^{2}$ for all $x \in \mathbb{R}$?
6. What is the Fourier transform of the sign function $\operatorname{sgn} ; \operatorname{sgn}(x)=1$, when $x \geq 0, \operatorname{sgn} ; \operatorname{sgn}(x)=-1$, when $x<0$?
7. Show that if μ is a finite Borel measure on $\left.\{x, 0) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}$, then $\hat{\mu}(\xi)$ does not tend to 0 as $|\xi| \rightarrow \infty$.
8. Show that there can be no inequality $\|\widehat{f \mu}\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C_{p, q}\|f\|_{L^{p}(\mu)}$ for $1 \leq p \leq \infty, 1 \leq q<\infty$, where μ is the one-dimensional Lebesgue measure on the segment $[(-1,0),(1,0)]$.
9. What kind of decay estimate can you get for the Fourier transform of the surface measure on the conical surface

$$
C=\left\{(z, t) \in \mathbb{R}^{3}:|z|=t, 1 \leq t \leq 2\right\}
$$

using the decay estimate for the length measure on the circle?
10. What kind of analog of the Tomas-Stein theorem can you get for the cone C ?
11. Let μ be a finite Borel measure with compact support in $\mathbb{R}^{n}, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ an affine bijection ($T x=L x+a$ with L a linear bijection and $a \in \mathbb{R}^{n}$). Let
ν be the push-forward of μ under $T ; \int g d \nu=\int g \circ T d \mu$. Show that if the restriction estimate

$$
\|\hat{f}\|_{L^{q}(\mu)} \leq C_{p, q}\|f\|_{p}, f \in \mathcal{S}\left(\mathbb{R}^{n}\right),
$$

holds for μ it holds also for ν. Conclude that the restriction theory for ellipsoids is essentially the same as for the sphere.
12. Let $R \subset \mathbb{R}^{2}$ be a rectangle with side-lengths r_{1} and r_{2} and ϕ a C^{∞} _ function with support in R. Find a 'dual' rectangle \tilde{R} of R with side-lengths $1 / r_{1}$ and $1 / r_{2}$ such that $\hat{\phi}$ decays very fast (what should this mean?) outside \tilde{R}.
13. Prove that $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $H^{\sigma}\left(\mathbb{R}^{n}\right)$. The denseness of $C^{\infty}\left(\mathbb{R}^{n}\right)$ is proved in Lemma 17.1.
14. Prove that the operator norm of T_{m} as the operator from L^{2} in L^{2} equals $\|m\|_{\infty}$.
15. Prove that if $1<p<\infty$ and $f \in L^{p}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then

$$
f(x)=\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{2 \pi i x \xi} \widehat{f}(\xi) d \xi \text { in the } L^{p} \text { sense }
$$

using the boudedness of the multiplier operators of the intervals $[-R, R]$.
16. Prove that if $1<p<\infty$ and $n \geq 2$, then the convergence

$$
f(x)=\lim _{R \rightarrow \infty} \int_{B(0, R)} e^{2 \pi i x \cdot \xi} \widehat{f}(\xi) d \xi \text { in the } L^{p} \text { sense }
$$

holds for all $f \in L^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $p=2$.
17. Prove that for any $n \geq 1$, the operator norm of $T_{B(a, r)}$ is independent of $a \in \mathbb{R}^{n}$ and $r>0$.
18. Prove that the characteristic function of a polyhedral domain $P \subset \mathbb{R}^{n}$ is an L^{p} multiplier for $1<p<\infty$.
19. Prove that the Bochner-Riesz multiplier m_{δ} is not an L^{p}-multiplier if $p \leq \frac{2 n}{n+1+2 \delta}$ or $p \geq \frac{2 n}{n-1-2 \delta}$. You can of course use the kernel K_{δ} and its asymptotic properties.

