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1. Dyadic cubes and the dyadic maximal operator

1.A. Dyadic cubes: basics. The standard dyadic cubes of Rd consist of the collection

D := {2−k([0, 1)d +m) : k ∈ Z,m ∈ Zd}.
It is the union over k ∈ Z of the collections

Dk := {2−k([0, 1)d +m) : m ∈ Zd}.
The main properties of dyadic cubes are:

• Each Dk is a partition (i.e., a pairwise disjoint cover) of Rd.
• Each Dk+1 is a refinement of the previous Dk: i.e., we have

Q =
⋃

Q′∈Dk+1

Q′⊆Q

Q

for every Q ∈ Dk.
We denote by `(Q) the side-length of a cube, and by |Q| = `(Q)d its Lebesgue measure.

Definition 1.1. A collection of sets Q is said to
(1) be nested if

Q ∩R ∈ {∅, Q,R} for all Q,R ∈ Q, (1.2)
(2) have an infinite increasing chain if there exist Qk ∈ Q, k ∈ N, such that Qk ( Qk+1 for

all k ∈ N.
An element Q ∈ Q is said to be maximal if there does not exist any R ∈ Q with R ) Q. The
collection of maximal elements in Q is denoted by Q∗.

It is easy to check that any subcollection Q ⊆ D of dyadic cubes is nested. On the other hand,
this property fails for almost any other collection of sets. (Say, the intersection of balls is often
not a ball at all, not to mention one of the original balls.)

The collection D has infinite increasing chains, for instance Qk := 2k[0, 1)d, k ∈ Z, and it does
not have any maximal elements (since every dyadic cube is always contained in a strictly bigger
dyadic cube). On the other hand, if E is any bounded set, then Q = {Q ∈ D : Q ⊆ E} does
not have infinite increasing chains, since `(Qk) ≥ 2`(Qk−1) ≥ . . . ≥ 2k`(Q0) in such a chain, and
eventually the side-length would be too big to fit inside the bounded set E.

Lemma 1.3. Let Q be a collection of sets.
(1) If Q does not have infinite increasing chains, then every Q ∈ Q is contained in a maximal

Q∗ ∈ Q∗.
(2) If Q is nested, then any two Q,R ∈ Q∗ are disjoint.

Proof. (1): Let Q0 ∈ Q be given; we need to find some maximal Q∗ containing Q0. If Q0 itself is
maximal, we take Q∗ = Q0. Otherwise, by definition, there exists some Q1 ∈ Q with Q1 ) Q0.
Suppose that we have already found Qk ) Qk−1 ) . . . ) Q1 ) Q0. If Qk is maximal, then we
are done with Q∗ := Qk. Otherwise, there exists some Qk+1 ∈ Q with Qk+1 ) Qk. This process
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must terminate after finitely many steps with some Qn being maximal, since otherwise we could
construct an infinite increasing chain, a contradiction.

(2): We understand of course that we mean two different Q,R ∈ Q∗: Q 6= R. Since Q is
nested, we have Q ∩ R ∈ {∅, Q,R}. If they are not disjoint, i.e., Q ∩ R 6= ∅, this only leaves the
options Q ∩ R ∈ {Q,R}. Suppose for instance that Q ∩ R = Q, the other case being symmetric.
This means that Q ⊆ R, and since Q 6= R, that Q ( R. But this contradicts with the maximality
of Q. Thus disjointness is the only possibility. �

1.B. The dyadic maximal operator. The dyadic maximal operator Md is defined by

Mdf(x) := sup
Q∈D
Q3x

1
|Q|

ˆ
Q

|f |dy, (1.4)

where the supremum is over all dyadic cubes that contain the point x ∈ Rd. It satisfies the following
fundamental estimate, whose proof is a good illustration of the basic properties of dyadic cubes:

Proposition 1.5. For every f ∈ L1(Rd) and λ > 0, we have

|{x ∈ Rd : Mdf(x) > λ}| ≤ 1
λ
‖f‖L1 :=

1
λ

ˆ
Rd
|f |dy.

The set appearing in the estimate is a particular case of a level set of a function. We will often
use the shorter notation

{g > λ} := {x ∈ Rd : g(x) > λ}.

Proof. Let

Qλ := {Q ∈ D :
1
|Q|

ˆ
Q

|f |dy > λ}.

From the definition of the dyadic maximal operator, we have Mdf(x) > λ if and only if there
exists a Q ∈ Qλ with Q 3 x. Thus

{Mdf > λ} =
⋃

Q∈Qλ

Q. (1.6)

Since Qλ ⊆ D , it is nested. Let us check that it does not have infinite increasing chains. This
follows by observing that for every Q ∈ Qλ, we have

|Q| ≤ 1
λ

ˆ
Q

|f |dy ≤ 1
λ
‖f‖1, (1.7)

so that the measure of the cubes Q ∈ Qλ is bounded from above. This is not the case for dyadic
cubes in an infinite increasing chain, since |Qk+1| ≥ 2d|Qk| for Qk+1 ) Qk. We conclude from
Lemma 1.3(1) that ⋃

Q∈Qλ

Q =
⋃

Q∗∈Q∗λ

Q∗ : (1.8)

here ⊇ is clear since Qλ ⊇ Q∗λ, and ⊆ follows from Lemma 1.3(1), since every Q on the left is
contained in some Q∗ on the right by the lemma. The union on the right of (1.8) is disjoint by
Lemma 1.3(2).

Now we just put the pieces together:

|{Mdf > λ}| =
∣∣∣ ⋃
Q∈Qλ

Q
∣∣∣ =

∣∣∣ ⋃
Q∈Q∗λ

Q
∣∣∣ ≤ ∑

Q∈Q∗λ

|Q| ≤ 1
λ

∑
Q∈Q∗λ

ˆ
Q

|f |dy

=
1
λ

ˆ
Rd

( ∑
Q∈Q∗λ

1Q(y)
)
|f(y)|dy

(?)

≤ 1
λ

ˆ
{Mdf>λ}

|f(y)|dy ≤ 1
λ
‖f‖L1 .

Here (?) was based on the fact that the cubes Q ∈ Qλ are pairwise disjoint, so at most one Q
contains any given y ∈ Rd; on the other hand, if y ∈ {Mdf > λ} =

⋃
Q∈Q∗λ

Q, then there exists
exactly one such cube. Note that the second-to-last estimate above gave a slightly more precise
bound than claimed in the proposition. �
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1.C. The dyadic maximal operator for general measures. The definition (1.4) immediately
generalizes to other measures µ in place of the Lebesgue measure: we just replace every occurrence
of the Lebesgue measure, both in integrations and in taking the measures of sets, by the measure
µ. For the expression to be meaningful, we only ask that µ is a locally finite Borel measure (so
that cubes are measurable, and µ(Q) <∞). Thus we define

Mµ
d f(x) := sup

Q∈D
Q3x

1
µ(Q)

ˆ
Q

|f |dµ.

This also satisfies the analogue of Proposition 1.5, again replacing every occurrence of the Lebesgue
measure by µ:

Proposition 1.9. For every f ∈ L1(µ) and λ > 0, we have

µ({Mµ
d f > λ}) ≤ 1

λ
‖f‖L1(µ) :=

1
λ

ˆ
Rd
|f |dµ.

Proof. An inspection of the proof of Proposition 1.5 shows that the same argument goes through
verbatim, except for one point: in arguing that Qλ does not have infinite increasing chains, we
used a specific property of the Lebesgue measure that |Q| ≥ 2d|Q′| for dyadic cubes Q ) Q′. This
might fails for other measures, so we need to modify the argument. The problem is not serious
however, and can be fixed by a simple localization.

Let D(n) := {Q ∈ D : `(Q) ≤ 2n}, and define Mµ
d,nf by replacing D in the definition of Mµ

d f

by D(n). It is easy to check thatMµ
d f(x) is the monotone increasing limit ofMµ

d,nf(x) as n→∞.
Now

{Mµ
d,nf > λ} =

⋃
Q∈Qλ,n

Q, where Qλ,n := {Q ∈ D(n) :
1

µ(Q)

ˆ
Q

|f |dµ > λ}

is nested and does not have infinite increasing chains (since the side-length in D(n) is bounded
from above, but the side-length in an infinite increasing chain increases without limit). Thus a
trivial modification of the existing argument shows that

µ({Mµ
d,nf > λ}) ≤ 1

λ

ˆ
{{Mµ

d,nf>λ}
|f |dµ ≤ 1

λ
‖f‖L1(µ),

and the proposition follows by monotone convergence:

µ({Mµ
d f > λ}) = µ

( ⋃
n∈N
{Mµ

d,nf > λ}
)

= lim
n→∞

µ({Mµ
d,nf > λ}). �

2. From dyadic to non-dyadic: shifted dyadic cubes

2.A. Hardy–Littlewood maximal operators. A general class of maximal operators can be
defined as follows. Let Q = {Qx}x∈Rd be a family of collections of sets, indexed by x ∈ Rd. (I.e.,
for every x ∈ Rd, Qx is a collection of sets.) Then

MQf(x) := sup
Q∈Qx

1
|Q|

ˆ
Q

|f |dy.

Clearly Md is the special case with Qx = Dx := {Q ∈ D : Q 3 x}.
For two collections of sets Q and R, we say that R dominates Q (with constant K) if

∀ Q ∈ Q : ∃ R ∈ R :

{
R ⊇ Q, and
|R| ≤ K|Q|.

(2.1)

Exercise 2.2. Prove that if Rx dominates Qx, then MQf(x) ≤ KMRf(x), where K is the
domination constant.

In particular, if Rx dominates Qx, and Qx dominates Rx, then MQf(x) and MRf(x) are
comparable.

In many questions of Analysis, one of the following variants of the Hardy–Littlewood maximal
operator plays a role:
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(1) The centred ball maximal operator Mc corresponds to Qx = Bc
x := {B(x, r) : r > 0}.

(2) The non-centred ball maximal operator Mb corresponds to Qx = Bx := {B ball : B 3 x}.
(3) The centred or non-centred cube maximal operators are defined in a similar way with

cubes instead of balls.
Although they look different at first, these are actually all pointwise comparable. As an example,
we check:

Lemma 2.3. Mcf(x) ≤Mbf(x) ≤ 2dMcf(x).

Proof. By Exercise 2.2, it suffices to check that Bx dominates Bc
x with constant 1, and Bc

x

dominates Bx with constant 2d. The first case is obvious, since Bc
x ⊂ Bx (balls centred at x are

special cases of balls containing x!). For the other case, let B(z, r) ∈ Bx be any ball containing
x. We claim that B(z, r) ⊆ B(x, 2r) ∈ Bc

x; indeed, if y ∈ B(z, r), then

|y − x| ≤ |y − z|+ |z − x| < r + r = 2r,

where we used y ∈ B(z, r) and z ∈ B(x, r). Thus y ∈ B(x, 2r), and since ∈ B(z, r) was arbitrary,
this shows that B(z, r) ⊆ B(x, 2r). On the other hand, we have

|B(x, 2r)| = vd(2r)d = 2d · vdrd = 2d|B(z, r)|,

where vd = |B(0, 1)| is the measure of the d-dimensional unit ball. Thus we find that Bc
x dominates

Bx with constant 2d, as claimed. �

It is also easy to check that Bx dominates Dx with a dimensional constant, and thusMdf(x) ≤
cdMbf(x) ≤ 2dcdMcf(x). However, the opposite estimate fails: It is easy to check that if f is
nonzero function (more precisely: nonzero in a set of positive measure) then Mcf(x) > 0 at every
point x ∈ Rd. However, if f is supported in one of the “quadrants”, say in the positive quadrant
[0,∞)d, then so is Mdf . Thus, if f is nonzero and supported in [0,∞)d, and x ∈ Rd \ [0,∞)d,
then Mdf(x) = 0 < Mcf(x). Hence Mcf(x) ≤ KMdf(x) cannot be true with any constant K.

This seems to indicate that the dyadic maximal operator has no use in trying to estimate
the Hardy–Littlewood maximal operator. However, the situation changes as soon as we consider
several dyadic systems!

2.B. Shifted dyadic systems. There is a general constructing shifted dyadic systems. Let
ω = (ωk)k∈Z be a sequence of binary vectors ωk ∈ {0, 1}d. For a dyadic cube Q ∈ D , we define its
shift by ω as a shift by a truncation of the formal (usually divergent) binary expansion

∑
k∈Z ωk2−k:

Q+̇ω := Q+ ω(`(Q)) := Q+
∑

j:2−j<`(Q)

ωj2−j .

We define Dω
k := {Q+̇ω : Q ∈ Dk} and Dω :=

⋃
k∈Z Dω

k .

Lemma 2.4. For every ω ∈ ({0, 1}d)Z, the system Dω is another dyadic system in the sense that:
(1) Each Dω

k is a partition of Rd.
(2) Each Dω

k+1 is a refinement of the previous Dω
k .

Proof. (1) is obvious, since we just shift each element of the partition Dk by the same number
ω(2−k).

(2) requires a little argument to check that the shifts by the different numbers ω(2−k) on Dk,
and ω(2−k−1) on Dk+1, produce compatible partitions. The key is to observe that:

• ω(2−k) = ω(2−k−1) + ωk+12−k−1, where ωk+1 ∈ {0, 1}d, and
• we have

Dk+1 = {2−k−1[0, 1)d + 2−k−1m : m ∈ Zd}

= {2−k−1[0, 1)d + 2−k−1(m+ ωk+1) : m ∈ Zd} = Dk+1 + 2−k−1ωk+1,

by simple re-parametrization, since m+ ωk+1 also runs through Zd when m does.
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A combination of these points shows that

Dk+1 + ω(2−k−1) = Dk+1 + ωk+12−k−1 + ω(2−k−1) = Dk+1 + ω(2−k).

This is obviously a refinement of Dk + ω(2−k), since Dk+1 is a refinement of Dk. �

Exercise 2.5. Consider the dimension d = 1, and let x ∈ R be a fixed point. Consider the shifted
system Dx := {Q + x : Q ∈ D}, where Q + x is just a usual translation of the cube (interval) Q
by x. Show that Dx is a special case of the shifted systems Dω for some fω = ω(x) ∈ {0, 1}Z, and
compute this ω(x). Note that the formula should look slightly different for x ≥ 0 and x < 0.

Exercise 2.6. From the result of the previous exercise, deduce a criterion for ω ∈ {0, 1}Z to
determine is it is of the form ω = ω(x) for some x ∈ Rd. Conclude that “most” ω ∈ {0, 1}Z are
not of this form.

2.C. Special shifted systems, d = 1. After the general definition, we concentrate for a while
on dimension d = 1. It is obvious that ωj ≡ 0 gives the original dyadic system Dω = D0 = D .
This also happens if ωj ≡ 1.

Our aim is now to construct a shifted system that, in some sense, is as far away from the original
one as possible. Thus we choose ωj where the values of 0 and 1 alternate, which gives two options:
ω1
j := 12Z(j) and ω2

j := 12Z+1(j), i.e., ω1
j is 1 for even j and 0 for odd j, and ω2

j behaves in the
opposite way. Let us abbreviate

D i := Dωi , i = 1, 2.

Lemma 2.7.

ωi(2−k) =

{
2
3 · 2

−k, if i, k have same partity (both even or both odd),
1
3 · 2

−k, if i, k have different parity (one even and one odd).

=
(

12Z+1(k) + (−1)k
i

3

)
2−k.

Proof. By definition

ωi(2−k) =
∑
j>k

j−i odd

2−j = 2−k
∑
h>0

h−k−i odd

2−h,

where the summation condition is h even, if k − i is odd, and h odd, k − i is even. It remains to
observe that ∑

h>0
h even

2−h =
∞∑
i=1

2−2i =
1
3
,

∑
h>0
h odd

2−h =
∞∑
i=1

2−(2i−1) =
2
3
. �

This proves the first identity of the lemma, and the second one is easily checked by considering
the four possibilities (k even or odd, i = 1, 2) case by case.

We have already pointed out before that Dk+2−k is simply Dk. Thus it follows from the lemma
that for i = 1, 2, we have

D i
k =

{
2−k

(
[0, 1) +m+ (−1)k

i

3

)
: m ∈ Z

}
, (2.8)

and this formula has the virtue of being obviously valid for i = 0 (with D0 = D) as well. By
Lemma 2.4, the new systems D i, i = 1, 2, share the key properties of the original D . However,
the true value of these shifted systems comes only when using them simultaneously :

Proposition 2.9. Let I ⊂ R be any finite interval. Then for at least two (but not necessarily all
three!) values of i ∈ {0, 1, 2}, there exists J ∈ D i such that

J ⊇ I, 3`(I) < `(J) ≤ 6`(I).
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Proof. Let k be the unique integer such that 3`(I) < 2−k ≤ 6`(I). (There is always a power of 2
in an interval (t, 2t].) Let

E i
k := {2−k(m+ (−1)ki/3) : m ∈ Z}, i = 0, 1, 2,

be the set of end-points of the intervals D i
k. Then it is immediate that the sets E i

k , i = 0, 1, 2, are
pairwise disjoint, and

Ek := E 0
k ∪ E 1

k ∪ E 2
k = {2−k(m+ i/3) : m ∈ Z, i = 0, 1, 2}

is a doubly infinite arithmetic sequence where the distance of consecutive points is 2−k/3 > `(I).
It follows that I contains at most one point of Ek. By disjointness, there are at least two values
i ∈ {0, 1, 2} such that I does not contain any point of E i

k . Now, if J ∈ D i
k (for either of these two

values of i) is the unique interval that contains the centre of I, it must actually contain the whole
of I. And we have `(J) = 2−k ∈ (3`(I), 6`(I)], as required. �

Let
Ix := {I ⊂ R a finite interval : I 3 x},

and recall that
D i
x := {J ∈ D i : J 3 x}.

An immediate reformulation of Proposition 2.9 in the language of domination (recall (2.1)) is
that D i

x ∪ Dj
x dominates Ix, whenever i, j ∈ {0, 1, 2} and i 6= j. (Mostly we apply this with

(i, j) = (0, 1), i.e., we take the standard dyadic system, and one shifted copy of it.) Thus, an
immediate consequence of Proposition 2.9 and Exercise 2.2 is that

Mbf(x) = sup
I∈Ix

1
|I|

ˆ
I

|f |dy ≤ 6 sup
J∈Di

x∪Dj
x

1
|J |

ˆ
J

|f |dy

≤ 6 max(M i
df(x),M j

df(x)) ≤ 6(M i
df(x) +M j

df(x)),

where M i
d is the dyadic maximal operator related to the dyadic system D i in place of D . (The

notation Mb is used, since the intervals are one-dimensional “balls”.) Thus, many results about
the Hardy–Littlewood maximal operator can be deduced from results for the dyadic maximal
operator, as soon as we use more than one dyadic system. We will later generalize this result to
several dimensions as well.

Exercise 2.10. Consider the triadic systems of intervals

T i =
⋃
k∈Z

T i
k , T i

k := {3−k([0, 1) +m+ i/2) : m ∈ Z}, i = 0, 1.

Sketch a picture, and convince yourself (no need to make a detailed verification) of the facts that
T i
k is a partition of R and T 0

k+1 refines T 0
k . Prove that T 1

k+1 refines T 1
k .

Exercise 2.11. Prove an analogue of Proposition 2.9 for T 0 and T 1: For any finite interval
I ⊆ R, there exists J ∈ T 0 ∪T 1 such that J ⊇ I and `(I) ≤ K`(J). Which estimate can you get
for K?

3. Higher dimensions and first weighted bounds

3.A. Special shifted systems, d ≥ 1. Recall that our general construction of shifted dyadic
systems in any dimension was the formula

Q+̇ω = Q+ ω(`(Q)) = Q+
∑

j:2−j<`(Q)

ωj2−j ,

where ω = (ωj)j∈Z ∈ ({0, 1}d)Z. Thus each ωj is a d-vector ωj = (ωij)
d
i=1, and we can also from

the sequences ωi = (ωij)j∈Z ∈ {0, 1}Z, which give rise to one-dimensional shifted dyadic systems.
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If a cube Q = I1 × · · · × Id is written as a product of intervals, the shift takes the form

Q+̇ω = I1 × · · · × Id +
( ∑
j:2−j<`(Q)

ωij2
−j
)d
i=1

=
(
I1 +

∑
j:2−j<`(I1)

ω1
j 2−j

)
× · · · ×

(
Id +

∑
j:2−j<`(Id)

ωdj 2−j
)

= (I1+̇ω1)× · · · × (Id+̇ωd),

(3.1)

a product of shifted intervals in each of the coordinate directions. (We used above the fact that
`(Q) = `(I1) = . . . = `(Id): the side-length of a cube is equal to the length of any of its component
intervals.) This establishes a one-to-one correspondence between shifted systems in d dimensions,
and d-fold products of shifted systems in one dimensions.

If we take the products of the special shifted systems (2.8), we arrive at

Dα(Rd) =
{

2−k([0, 1)d +m+
1
3

(−1)kα) : k ∈ Z,m ∈ Zd
}
, α = (αi)di=1 ∈ {0, 1, 2}d,

= {Q = I1 × · · · × Id : Ii ∈ Dαi(R), `(I1) = . . . = `(Id)},

where we have indicated the underlying space of the dyadic systems in parentheses for clarity.
Usually we work in one fixed dimension, so that there is no need to do so.

Proposition 3.2. Let Q be any cube (with sides parallel to the coordinate axes) in Rd. Then
there exists α ∈ {0, 1}d, and R ∈ Dα(Rd), such that

R ⊇ Q, 3`(Q) < `(R) ≤ 6`(Q).

Note that we need only the 2d cases α ∈ {0, 1}d here. All the 3d cases α ∈ {0, 1, 2}d are used
for a somewhat stronger conclusion formulated in the exercise below.

Proof. We write Q = I1 × . . . × Id as a product of intervals, and apply Proposition 2.9 in each
coordinate direction. As stated, Proposition 2.9 says that for at least two choices of αi ∈ {0, 1, 2},
there is Ji ∈ Dαi(R) with Ji ⊃ Ii and 3`(Ii) < `(Ji) ≤ 6`(Ii). This means in particular that
the same conclusion is true for at least one choice of αi ∈ {0, 1}. Then it follows that the set
R := J1 × · · · × Jd contains Q = I1 × · · · × Id.

To conclude observe that `(Ii) = `(Q) for all i. Now `(Ji) ∈ (3`(Ii), 6`(Ii)] = (3`(Q), 6`(Q)] and
`(Ji) is an integer power of two. There is exactly one such number in the interval (3`(Q), 6`(Q)],
and therefore all `(Ji) are actually equal. Thus R is actually a cube, with `(R) = `(J1) = . . . =
`(Jd) ∈ (3`(Q), 6`(Q)], and more specifically it is a cube of the form appearing in (3.1). Thus
R ∈ Dα, and we are done. �

Exercise 3.3. Prove the following variant of Proposition 3.2: Let Q and P be any two cubes (with
sides parallel to the coordinate axes) in Rd. Then there exists α ∈ {0, 1, 2}d, and R,S ∈ Dα(Rd)
(same α for both R and S!), such that

R ⊇ Q, 3`(Q) < `(R) ≤ 6`(Q),

S ⊇ P, 3`(P ) < `(S) ≤ 6`(P ).

(Hint: Deduce the one-dimensional case from Proposition 2.9, then proceed to higher dimensions
in a similar way as in the proof of Proposition 3.2.) Check that if Q ⊆ P , then R ⊆ S.

3.B. A maximal function estimate with different measures. The action of maximal opera-
tors can be naturally extended to measures in place of functions. If ν is a positive Borel measure,
we define

Md
µν(x) := sup

Q∈D
Q3x

ν(Q)
µ(Q)

. (3.4)

It is immediate that
Md
µν(x) = Md

µφ(x) if ν(E) =
ˆ
E

φ(x) dµ(x),
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i.e., if ν is a weighted measure (with density φ ≥ 0) relative to the measure µ. The above relation
of ν, µ and φ is often abbreviated as dν = φ dµ.

Proposition 3.5 (Fefferman–Stein [FS71]).

ν({Md
µf > λ}) ≤ 1

λ

ˆ
Rd
|f(x)|Md

µν(x) dµ(x).

Proof. The proof is a simple adaptation of the case µ = ν. As before, consider

Qλ :=
{
Q ∈ D :

1
µ(Q)

ˆ
Q

|f |dµ > λ
}
.

We write the proof in the case that Qλ is without infinite increasing chains; in general, ensuring
this would require a truncation argument, but we skip those details. Then, denoting by Qλ the
maximal cubes in Qλ, we have

ν({Md
µf > λ}) = ν

( ⋃
Q∈Qλ

Q
)

= ν
( ⋃
Q∈Q∗λ

Q
)

=
∑
Q∈Q∗λ

ν(Q)

=
∑
Q∈Q∗λ

ν(Q)
µ(Q)

· µ(Q) ≤
∑
Q∈Q∗λ

inf
z∈Q

Md
µν(z) · 1

λ

ˆ
Q

|f(x)|dµ(x)

≤ 1
λ

∑
Q∈Q∗λ

ˆ
Q

|f(z)|Md
µν(x) dµ(x) ≤ 1

λ

ˆ
Rd
|f(z)|Md

µν(x) dµ(x).

Compared to the previous cases, the additional step was to multiply and divide by µ(Q), and to
estimate the ratio ν(Q)/µ(Q) in terms of the maximal function. �

3.C. Lp bounds and interpolation. Denoting

dω := Md
µν dµ,

the estimate just proven takes the form

λ · ν({Md
µf > λ}) ≤ ‖f‖L1(ω).

Defining
‖g‖L1,∞(ν) := sup

λ>0
λ · ν({|g| > λ}),

this can be further written as
‖Md

µf‖L1,∞(ν) ≤ ‖f‖L1(ω),

which is known as a weak-type estimate. The space

L1,∞(ν) := {g : g is ν-measurable and ‖g‖L1,∞(ν) <∞}

is called the weak L1 space, and ‖ ‖L1,∞(ν) the weak L1 norm, although it is actually not a norm.
(It does not satisfy the triangle inequality.) Note that

λ · ν({|g| > λ}) =
ˆ
{|g|>λ}

λ dν ≤
ˆ
{|g|>λ}

|g|dν ≤ ‖g‖L1(ν),

so that ‖g‖L1,∞(ν) ≤ ‖g‖L1(ν). In general the latter norm can be much larger. For example, on R
with the Lebesgue measure, we have 1/x ∈ L1,∞(R) \ L1(R). This explains the name “weak”.

We would now like to consider Lp estimates for Md
µ for p > 1. Let us first consider the extreme

p =∞:

Lemma 3.6.
‖Md

µf‖L∞(ν) ≤ ‖f‖L∞(ω), dω = Md
µν dµ.
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Heuristic proof. If f is bounded by K, then
1

µ(Q)

ˆ
Q

|f |dµ ≤ 1
µ(Q)

ˆ
Q

K dµ = K
µ(Q)
µ(Q)

= K,

and hence Md
µf is also bounded by K. However, this is not a proper proof, since ‖f‖L∞(ω) = K

does not mean that |f(x)| ≤ K at every x, only that this is true for ω-almost every x, and one
needs some care with the zero sets of the different measures. �

Exercise 3.7. Give a proper proof of Lemma 3.6. (Hint: Recall that

‖f‖L∞(ω) := inf
{
λ ∈ [0,∞) : ω({|f | > λ}) = 0

}
.

Argue that it is enough to prove that ν(Q) = 0 for all Q ∈ Qλ, where this set is defined as usual.)
Also check that the above heuristic proof is almost correct in the case that ν = µ.

The Lp inequality for the maximal function reads as follows:

Theorem 3.8 (Dyadic maximal function inequalities with two measures). For two locally finite
measures µ and ν on Rd, we have the inequalities

‖Md
µf‖L1,∞(ν) ≤ ‖f‖L1(ω), dω = Md

µν dµ,

‖Md
µf‖Lp(ν) ≤ p′‖f‖Lp(ω), ∀p ∈ (1,∞], p′ =

p

p− 1
.

In particular, if dν = w dµ is a weighted measure with respect to µ, the second bound takes
the form ( ˆ

Rd
(Md

µf)pw dµ
)1/p

≤ p′
(ˆ

Rd
|f |pMd

µw dµ
)1/p

, (3.9)

which will have an interesting application — completely unrelated to weights — in the following
section.

Proof. The weak-type bound is Proposition 3.5, and the case p =∞ is Lemma 3.6. The remaining
cases are a consequence of these two via the following general interpolation theorem. �

Theorem 3.10 (Marcinkiewicz interpolation theorem, special case). Suppose that T is a sublinear
operator (meaning that |T (f + g)| ≤ |Tf |+ |Tg| pointwise) from L1(ω) + L∞(ω) to ν-measurable
functions, such that

‖Tf‖L1,∞(ν) ≤ A1‖f‖L1(ω),

‖Tf‖L∞(ν) ≤ A∞‖f‖L∞(ω).

Then
‖Tf‖Lp(ν) ≤ p′A

1/p
1 A1/p′

∞ ‖f‖Lp(ω), ∀p ∈ (1,∞).

Proof. The proof depends on the important level set formula (applied to φ = Tf)

‖φ‖pLp(ν) =
ˆ ∞

0

pλp−1ν({|φ| > λ}) dλ. (3.11)

This is most easily verified by observing that both sides are equal to the double integral (evaluated
in one or the other order, which is legitimate by Fubini’s theorem)ˆ ∞

0

ˆ
Rd
pλp−11{(x,λ):|φ(x)|>λ}(x, λ) dν(x) dλ.

Another tool is the splitting of f into parts where it is “small” or “large” relative to the level λ.
A first attempt would

f̃λ := 1{|f |≤Aλ}f, f̃λ := 1{|f |>Aλ}f,

where ‖f̃λ‖L∞(ω) ≤ Aλ. However, we can have this same bound even if we make f̃λ slightly larger,
and thus f̃λ slightly smaller; namely, we define

fλ := 1{|f |≤Aλ}f + 1{|f |>Aλ}
f

|f |
Aλ, fλ := 1{|f |>Aλ}f

(
1− Aλ

|f |

)
,
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The parameter A will be chosen below.
We also split λ as λ = αλ + βλ, where α + β = 1, and this will be also chosen below. Now, if

|Tf | > λ, then

αλ+ βλ = λ < |Tf | ≤ |Tfλ|+ |Tfλ|,

and we must have at least one of |Tfλ| > αλ or |Tfλ| > βλ.
We now choose the parameters so that the first case is impossible; namely, we have

‖Tfλ‖L∞(ν) ≤ A∞‖fλ‖L∞(ω) ≤ A∞Aλ.

Thus we choose A = α/A∞, and conclude that |Tfλ| > αλ only in a set of measure zero. Hence

ν({|Tf | > λ}) ≤ ν({|Tfλ| > βλ}) ≤ A1

βλ
‖fλ‖L1(ω) =

A1

βλ

ˆ
1{|f |>Aλ}(|f | −Aλ) dω,

and thus

‖Tf‖pLp(ν) =
ˆ ∞

0

pλp−1ν({|Tf | > λ}) dλ

≤
ˆ ∞

0

pλp−1ν({|Tfλ| > βλ}) dλ

≤ pA1

β

ˆ ∞
0

λp−2

ˆ
1{|f |>Aλ}(|f | −Aλ) dω dλ

≤ pA1

β

ˆ ˆ |f |/A
0

(λp−2|f | −Aλp−1) dλ dω

≤ pA1

β

ˆ ( 1
p− 1

( |f |
A

)p−1|f | − A

p

( |f |
A

)p)dω

=
A1

βAp−1(p− 1)

ˆ
|f |p dω =

A1A
p−1
∞

(1− α)αp−1(p− 1)
‖f‖pLp(ω),

where we took into account that β = 1− α and A = α/A∞. It is a high school exercise (find the
zero of the derivative etc.) to optimize the right side in terms of α. The optimum is reached at
α = (p − 1)/p = 1/p′, at which point the denominator above becomes (1/p′)p. Taking the pth
roots we arrive at the asserted estimate for ‖Tf‖Lp(ν). �

Exercise 3.12. Let us denote by

Mf(x) := sup
Q cube
Q3x

1
|Q|

ˆ
Q

|f(y)|dy

the Hardy–Littlewood maximal function associated with the family of all cubes (with sides parallel
to coordinate axes) in Rd. Use Theorem 3.8 and shifted dyadic cubes to derive the analogous
statements for the Hardy–Littlewood maximal operator: For any locally finite measure ν on Rd,

‖Mf‖L1,∞(ν) ≤ cd‖f‖L1(Mν),

‖Mf‖Lp(ν) ≤ cd,p‖f‖Lp(Mν), p ∈ (1,∞],

where

‖f‖Lp(w) :=
( ˆ
|f |pw dx

)1/p

(with w(x) = Mν(x), which is defined by an obvious modification of (3.4)) denotes the Lp norm
weighted with respect to the Lebesgue measure. Pay attention to the weak-type estimate, bearing
in mind that ‖ ‖L1,∞(ν) is not a proper norm.



DYADIC ANALYSIS AND WEIGHTS 11

4. Vector-valued maximal inequality

4.A. Duality of Lp spaces. The elementary inequality

ab ≤ ap

p
+
bp
′

p′
, for a, b ∈ [0,∞), p ∈ (1,∞), p′ =

p

p− 1
,

can be easily verified as a high school exercise. If we apply this to a = |f(x)| and b = |g(x)| for
each x, we find thatˆ

|f(x)g(x)|dµ(x) ≤ 1
p

ˆ
|f(x)|p dµ(x) +

1
p′

ˆ
|g(x)|p

′
dµ(x).

If we replace f by λf and g by g/λ (for a constant λ > 0, the left side is unchanged, and the
above estimate takes the form ˆ

|fg|dµ ≤ λp

p
‖f‖pp +

λ−p
′

p′
‖g‖p

′

p′ .

If we optimize the right size with respect to λ, we arrive at the final formˆ
|fg|dµ ≤ ‖f‖p‖g‖p′ , (4.1)

which is known as Hölder’s inequality.
There is an important converse to this estimate, contained in the following:

Theorem 4.2. Let µ be a σ-finite measure on Rd. For any µ-measurable function f and p ∈
(1,∞), we have

‖f‖Lp(µ) = sup
{∣∣∣ ˆ fg dµ

∣∣∣ : g ∈ Lp
′
(µ) : ‖g‖Lp′ (µ) ≤ 1

}
. (4.3)

The result is also true for p = 1,∞, but requires a modification of the argument. The space Rd
could be replaced by a more general measure space, with the same proof.

Proof. The bound “≥” is already contained in (4.1), so it remains to consider “≤”.

Case ‖f‖p = 0. Then f = 0 almost everywhere, and the right side of (4.3) is zero as well.

Case 0 < ‖f‖p <∞. We have

‖f‖pp =
ˆ
|f |p dµ =

ˆ
f · f̄ |f |p−2 dµ =:

ˆ
f · hf dµ,

where

‖hf‖p
′

p′ =
ˆ

(|f |p−1)p
′
dµ =

ˆ
|f |p dµ = ‖f‖pp;

thus
‖hf‖p′ = ‖f‖p/p

′

p = ‖f‖p−1
p ,

and hence

‖f‖p =
‖f‖pp
‖f‖p−1

p

=
´
f · hf dµ
‖hf‖p′

=:
ˆ
f · gf dµ,

where

gf :=
hf
‖hf‖p′

=
f̄ |f |p−2

‖f‖p−1
p

(4.4)

has Lp
′
(µ)-norm equal to 1. So in this case, we not only have “≤” in (4.3), but the supremum is

actually reached with the specific function gf .
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Case ‖f‖p = ∞. The σ-finiteness assumption says that there are sets En of finite measure such
that En ↑ Rd. Then also Fn := {|f | ≤ n}∩En ↑ Rd, and it is immediate that ‖1Fnf‖p <∞. Thus
the previous case of the proof shows that there exists a function gn := g1Fnf

with ‖gn‖p′ = 1 andˆ
f · 1Fngn dµ =

ˆ
1Fnf · gn dµ = ‖1Fnf‖p → ‖f‖p =∞

as n → ∞, and ‖1Fngn‖p ≤ ‖gn‖p = 1. (In fact, one can check that gn is supported on Fn, so
that 1Fngn = gn, and its norm is exactly one.) This proves “≤” in (4.3) even in this case. �

4.B. Vector-valued Lp spaces. The space Lp(µ; `q) consists of all sequences of functions ~f =
(fi)∞i=1 (or equivalently, sequence-valued functions) such that

‖~f‖Lp(µ;`q) :=
(ˆ [ ∞∑

i=1

|fi(x)|q
]p/q

dµ(x)
)1/p

=
( ˆ
|~f(x)|p`q dµ(x)

)1/p

= ‖|~f |`q‖Lp(µ)

is finite. Observe that if p = q, then

‖~f‖Lp(µ;`p) =
(ˆ ∞∑

i=1

|fi(x)|p dµ(x)
)1/p

=
( ∞∑
i=1

ˆ
|fi(x)|p dµ(x)

)1/p

=
( ∞∑
i=1

‖fi‖pp
)1/p

(4.5)

can be written in terms of the Lp norms of the fi, but this is the only such case.
The duality theorem extends to the vector-valued case as follows:

Theorem 4.6. Let µ be a σ-finite measure on Rd. For any µ-measurable sequence of functions
~f = (fi)∞i=1 and p, q ∈ (1,∞), we have

‖~f‖Lp(µ;`q) = sup
{∣∣∣ ˆ ∞∑

i=1

figi dµ
∣∣∣ : ~g = (gi)∞i=1 ∈ Lp

′
(µ; `q

′
) : ‖~g‖Lp′ (µ;`q′ ) ≤ 1

}
. (4.7)

Proof. “≥” consists of two applications of Hölder’s inequality, one on sequences and the other on
functions:ˆ ∞∑

i=1

|fi(x)gi(x)|dµ(x) ≤
ˆ
|~f(x)|`q |~g(x)|`q′ dµ(x) ≤ ‖|~f |`q‖Lp(µ)‖|~g|`q′‖Lp′ (µ).

“≤”, case 0 < ‖~f‖Lp(µ;`q) < ∞. We observe that the Duality Theorem 4.2 also applies to se-
quence space: either one can repeat the same proof, or observe that sequence spaces are actually
special cases of function spaces, where the underlying measure µ =

∑∞
i=1 δi is supported on

Z+ = {1, 2, . . .}, and assigns the measure one to each i ∈ Z+. Thus, for each x, related to the se-
quence ~f(x) = (fi(x))∞i=1, we can find another sequence ~v(x) = (vi(x))∞i=1, given by an adaptation
of the formula (4.4):

vi(x) =
f̄i(x)|fi(x)|q−2

|~f(x)|q−1
`q

,

so that
∑∞
i=1 fi(x)vi(x) = |~f(x)|`q and |~v(x)|`q′ = 1. On the other hand, by the Duality Theo-

rem 4.2 applied to the function x 7→ |~f(x)|`q , we find another function u, again given by (4.4):

u(x) =
|~f(x)|p−1

`q

‖|~f |`q‖p−1
Lp(µ)

,

such that
´
|~f |`qudµ = ‖|~f |`q‖Lp(µ). Putting things together, we find that

‖~f‖Lp(µ;`q) =
ˆ
|~f(x)|`qu(x) dµ(x) =

ˆ ∞∑
i=1

fi(x)vi(x)u(x) dµ(x) =:
ˆ ∞∑

i=1

fi(x)gi(x) dµ(x),
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where

gi(x) = vi(x)u(x) =
f̄i(x)|fi(x)|q−2

|~f(x)|q−p`q ‖~f‖
p−1
Lp(µ;`q)

satisfies

‖|~g|`q′‖Lp(µ) = ‖u|~v|`q′‖Lp(µ) = ‖u‖Lp(µ) = 1. �

Exercise 4.8. Complete the proof of Theorem 4.6 by considering the case that ‖~f‖Lp(µ;`q) =∞.
(Hint: In addition to the other approximations, it may be useful to truncate the sequences by
considering approximations with fi ≡ 0 for i > n.)

4.C. The Fefferman–Stein inequality.

Theorem 4.9 (Dyadic Fefferman–Stein inequality [FS71]).

‖(Md
µfi)

∞
i=1‖Lp(µ;`q) ≤ cpq‖(fi)∞i=1‖Lp(µ;`q)

Proof. We divide the proof into three cases according to the relative size of p and q:

Case p = q. This is the easy case: From (4.5), we find that

‖(Md
µfi)

∞
i=1‖Lp(µ;`p)

(4.5)
=
( ∞∑
i=1

‖Md
µfi‖

p
Lp(µ)

)1/p

(?)

≤
( ∞∑
i=1

(p′‖fi‖Lp(µ))p
)1/p (4.5)

= p′‖(fi)∞i=1‖Lp(µ;`p),

where (?) was an application of the usual dyadic maximal inequality in each component fi sepa-
rately.

Case p > q. Now

‖(hi)∞i=1‖Lp(µ;`q) =
(ˆ [ ∞∑

i=1

|hi|q
]p/q

dµ
)q/p×1/q

=
∥∥∥ ∞∑
i=1

|hi|q
∥∥∥1/q

Lp/q(µ)
, (4.10)

where Lp/q(µ) is another Lebesgue space with exponent p/q ∈ (1,∞), where we can apply the
Duality Theorem 4.2. Thus

‖(Md
µfi)

∞
i=1‖

q
Lp(µ;`q) = sup

{ˆ [ ∞∑
i=1

(Md
µfi)

q
]
g dµ : ‖g‖L(p/q)′ (µ) ≤ 1

}
,

where
ˆ [ ∞∑

i=1

(Md
µfi)

q
]
g dµ =

∞∑
i=1

ˆ
(Md

µfi)
qg dµ ≤

∞∑
i=1

(q′)q
ˆ
|fi|qMµg dµ

= (q′)q
ˆ [ ∞∑

i=1

|fi|q
]
Mµg dµ ≤ (q′)q

∥∥∥ ∞∑
i=1

|fi|q
∥∥∥
Lp/q(µ)

‖Mµg‖L(p/q)′ (µ)

≤ (q′)q‖(fi)∞i=1‖
q
Lp(µ)

p

q
‖g‖L(p/q)′ (µ).

The last factor is one in the supremum under consideration, so altogether we conclude that

‖(Md
µfi)

∞
i=1‖Lp(µ;`q) ≤ q′

(p
q

)1/q

‖(fi)∞i=1‖Lp(µ;`q), 1 < q < p <∞.
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Case p < q. Our strategy is to reduce this to the previous case by duality: observe that now
p′ > q′. However, there is a slight technical complication which requires to choose an additional
auxiliary exponent s ∈ (1, p). We then observe that

‖(hi)∞i=1‖Lp(µ;`q) =
(ˆ [ ∞∑

i=1

|hi|s×q/s
](p/s)/(q/s)

dµ
)s/p×1/s

= ‖(|hi|s)∞i=1‖
1/s

Lp/s(µ;`q/s)
. (4.11)

By the vector-valued Duality Theorem 4.6,

‖(Md
µfi)

∞
i=1‖sLp(µ;`q) = sup

{ˆ ∞∑
i=1

(Md
µfi)

sgi dµ : ‖~g‖L(p/s)′ (µ;`(q/s)′ ≤ 1
}
,

where ˆ ∞∑
i=1

(Md
µfi)

sgi dµ =
∞∑
i=1

ˆ
(Md

µfi)
sgi dµ ≤

∞∑
i=1

(s′)s
ˆ
|fi|sMd

µgi dµ

≤ (s′)s‖(|fi|s)∞i=1‖L(p/s)(µ;`q/s)‖(Md
µgi)

∞
i=1‖L(p/s)′ (µ;`(q/s)′ )

≤ (s′)s‖(fi)∞i=1‖sLp(µ;`q)

q

s

( (p/s)′

(q/s)′
)1−s/q

‖(gi)∞i=1‖L(p/s)′ (µ;`(q/s)′ ),

where we used (4.11) to the f factor, and the previous case of the Theorem to the g factor, with
(p/s)′ > (q/s)′ in place of p > q. Altogether, it follows that

‖(Md
µfi)

∞
i=1‖Lp(µ;`q) ≤ s′

(q
s

)1/s(p(q − s)
q(p− s)

)1/s−1/q

‖(fi)∞i=1‖Lp(µ;`q), (4.12)

which is valid for any s ∈ (1, p). �

Remark 4.13. We followed the (main lines of) the original proof of Fefferman and Stein for the
case p > q, but not for p < q. Originally, they handled this with the help of a vector-valued
L1–L1,∞ estimate. This weak-type strategy is perhaps a bit more complicated, but it provides
additional information and a better bound for the constants, even if one tries to optimize with
respect to the parameter s ∈ (1, p) in (4.12).

Exercise 4.14. Use Theorem 4.9 to derive the usual form of the Fefferman–Stein inequality for
the Hardy–Littlewood maximal operator M and the Lebesgue measure:

‖(Mfi)∞i=1‖Lp(Rd;`q) ≤ cpqd‖(fi)∞i=1‖Lp(Rd;`q).

Pay attention to which versions of the triangle inequality you need to get this.

5. The median

Our next major goal is to prove a certain formula, discovered by A. Lerner [Ler10], which
provides very useful and precise information about a measurable function in terms of its “local
oscillations”. Before we can state the formula, we need to introduce some auxiliary concepts, the
first of which is the notion of a median of a measurable function.

5.A. Lebesgue’s differentiation theorem. The following result, on the one hand, is one of the
main applications of the maximal function. On the other hand, it will be soon needed in our study
of the median.

Here we always consider the Lebesgue measure on Rd.

Theorem 5.1 (Lebesgue). Let f ∈ L1
loc(Rd). Then for a.e. x ∈ Rd, we have

lim
Q3x

`(Q)→0

1
|Q|

ˆ
Q

f dy = f(x),

where the limit is along all cubes that contain x and whose sidelength shrinks to zero.

Proof. If f is continuous at x, the claim is immediate from the definition of continuity.
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Case f ∈ L1(Rd). The claim is equivalent to

Lf(x) := lim sup
Q3x

`(Q)→0

∣∣∣ 1
|Q|

ˆ
Q

f dy − f(x)
∣∣∣ = 0

almost everywhere. We make the following observations concerning the operator L:
• L is sublinear: L(f + g) ≤ Lf + Lg.
• If g is continuous, then Lg = 0.
• Lf ≤ Mf + |f |, where M is the Hardy–Littlewood maximal operator (with respect to

cubes).
For a given f ∈ L1(Rd), we want to prove that Lf = 0 a.e. We first estimate the size of the set
{Lf > ε} for ε > 0. Given δ > 0, we can find a continuous fδ (even compactly supported if we
like) such that ‖f−fδ‖1 < δ. (Recall from Real Analysis that such functions are dense in L1(Rd).)
Now

Lf(x) ≤ L(f − fδ)(x) + Lfδ(x) ≤M(f − fδ)(x) + |f(x)− fδ(x)|+ 0,
and hence

|{Lf > ε}| ≤ |{M(f − fδ) > ε/2}|+ |{|f − fδ| > ε/2}|

≤ 2
ε
‖M(f − fδ)‖L1,∞ +

2
ε
‖f − fδ‖L1,∞

≤ 2
ε
C‖f − fδ‖1 +

2
ε
‖f − fδ‖1 ≤

2
ε

(C + 1)δ.

This is true for any δ > 0, and the left side is independent of δ. Taking the limit δ → 0, we find
that |{Lf > ε}| = 0. Thus also

|{Lf > 0}| =
∣∣∣ ∞⋃
n=1

{Lf > 1
n
}
∣∣∣ = 0.

Case f ∈ L1
loc(Rd). If x ∈ B(0, n) (ball of radius n centred at the origin), then Lf(x) =

L(1B(0,2n)f)(x) = 0 at almost every such x, since 1B(0,2n)f ∈ L1(Rd). Since Rd =
⋃∞
n=1B(0, n),

the claim follows. �

5.B. The median of a function. Let f : Q → R be a measurable function. Here Q could be
any set of finite positive measure, but later on it will mostly be a cube; hence the choice of the
letter. The median of f on Q is any real number mf (Q) with the following two properties:

|Q ∩ {f > mf (Q)}| ≤ 1
2 |Q|, (5.2)

|Q ∩ {f < mf (Q)}| ≤ 1
2 |Q|. (5.3)

Exercise 5.4. Show that every measurable function f : Q → R has a median, and that the set
of all medians is a closed interval. (Hint: Show that the set of numbers mf (Q) that satisfy (5.2)
is of the form [a,∞) for some a ∈ R; in particular, it is nonempty. Similarly, show that the set of
numbers mf (Q) satisfying (5.3) is of the form (−∞, b] for some b ∈ R. Finally show that a ≤ b.)

The median can be thought of as a substitute for the average of the function on Q. An
advantage is the fact that the median exists for any measurable function, whereas the average
〈f〉Q = |Q|−1

´
Q
f dx requires f to be integrable. (The median is also more stable in the sense

that it does not “see” singularities of a function which appear in sets of small measure, and it is
often preferred in applied statistics: on the economy pages of a newspaper one can often read about
the median prediction for the profit of a company.) A disadvantage is the possible non-uniqueness.
Because of this, one needs to be somewhat careful when working with the median.

The following simple observation is handy for estimating the median:

Lemma 5.5. The following claims hold for all medians mf (Q) and real numbers α:
• If |Q ∩ {f ≥ α}| > 1

2 |Q|, then mf (Q) ≥ α.
• If |Q ∩ {f ≤ α}| > 1

2 |Q|, then mf (Q) ≤ α.
• If |Q ∩ {f = α}| > 1

2 |Q|, then mf (Q) = α.
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Proof. Consider the first case, and suppose for contradiction that mf (Q) < α is a median. So in
particular |Q ∩ {f > mf (Q)}| ≤ 1

2 |Q|, hence

1
2 |Q| ≤ |Q ∩ {f ≤ mf (Q)}| ≤ |Q ∩ {f < α}| < 1

2 |Q|,

a contradiction.
The second claim can be proven similarly, or by reduction to the first claim by considering

(−f,−α) in place of (f, α). The third claim follows at once from the first and second. �

There is a median analogue of Lebesgue’s differentiation Theorem 5.1:

Proposition 5.6 (Fujii [Fuj91]). Let f : Rd → R be measurable. Then for almost every x ∈ Rd,
we have

lim
Q3x

`(Q)→0

mf (Q) = f(x),

where the limit is along all cubes containing x, whose volume goes to zero, and along all medians
of f on these cubes.

Proof. We introduce the auxiliary functions

sk :=
∑
j∈Z

j

2k
1{j2−k≤f<(j+1)2−k} =:

∑
j∈Z

j

2k
1Ekj .

Then sk ≤ f < sk + 2−k at every point. Observe that {Ekj}j∈Z is a partition of Rd for every k.
Now every 1Ekj ∈ L1

loc, so we may apply Lebesgue’s differentiation theorem, to the result that

|Q ∩ Ekj |
|Q|

=
1
|Q|

ˆ
Q

1Ekj dx −→
Q3x

`(Q)→0

1Ekj (x) (5.7)

for almost every x ∈ Rd. Let us explicitly denote the exceptional null set by Nkj , so the above
convergence holds for every x ∈ N c

kj . Let N :=
⋃
k,j Nk,j . This is another null set, and the

convergence (5.7) holds for every x ∈ N c and every k, j ∈ Z.
We turn to the actual claim of the lemma. Written out in terms of the definition of the limit,

it says that for almost every x ∈ Rd,

∀ε > 0 ∃δ > 0 : ∀Q 3 x, `(Q) < δ ⇒ |mf (Q)− f(x)| < ε, (5.8)

where mf (Q) is any median of f on Q.
Let x ∈ N c and ε > 0 be given. We choose k so that 2−k < ε. There is a unique j (determined

by x and k) such that x ∈ Ekj . By (5.7), we have the existence of a δ > 0 such that

|Q ∩ Ekj |
|Q|

>
2
3

∀Q 3 x such that `(Q) < δ. (5.9)

We now check that this same δ is also good for (5.8). So fix any cube Q as in (5.8). Recalling that
Ekj ⊆ {f ≥ j2−k} ∩ {f ≤ (j + 1)2−k}, Lemma 5.5 and (5.9) imply that

j2−k ≤ mf (Q) ≤ (j + 1)2−k.

But we also have j2−k ≤ f(x) < (j + 1)2−k since x ∈ Ekj , and thus |mf (Q) − f(x)| ≤ 2−k < ε,
and this is what we wanted to prove. �

6. Local oscillations and Lerner’s formula

We proceed to introduce more notation needed for Lerner’s formula.
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6.A. The decreasing rearrangement. This is another concept, which can be defined for any
measurable function f . We denote

f∗(t) := inf{α ≥ 0 : |{|f | > α}| ≤ t} (inf ∅ :=∞).

We make the following observations:
• f∗ is non-increasing.

Indeed, if s > t, the condition |{|f | > α}| ≤ s is easier to satisfy than |{|f | > α}| ≤ t.
So the set of admissible α’s is bigger for s, and the infimum of a bigger set is smaller.

• The set inside the infimum is of the form [α0,∞) (or ∅). Hence the infimum is reached
as a minimum; in particular, f∗(t) itself is an admissible value of α, so that

|{|f | > f∗(t)}| ≤ t. (6.1)

Indeed, if the set is nonempty and α belongs to this set, then every α′ > α satisfies

|{|f | > α′}| ≤ |{|f | > α}| ≤ t,

so also α′ belongs to the set. So it remains to show that the infimum α0 also belongs to
the set. This follows from {|f | > α0} =

⋃∞
j=1{|f | > α0 + j−1} and the monotonicity of

the measure,
|{|f | > α0}| = lim

j→∞
|{|f | > α0 + j−1}| ≤ t.

• We have (f1Q)∗(t) = inf{α ≥ 0 : |Q ∩ {|f | > α}| ≤ t}.
It suffices to check that Q ∩ {|f | > α} = {|1Qf | > α}. But this is easy to see.

Exercise 6.2. Prove the following alternative formula for the decreasing rearrangement:

f∗(t) = inf
|E|≤t

‖1Ecf‖∞,

where the infimum is taken over all measurable sets with |E| ≤ t. Show that the infimum is
reached as a minimum with the set E = {|f | > f∗(t)}.

Exercise 6.3. Let f, g, h be measurable functions and c a constant. Prove the pointwise bounds
and identities

|f | ≤ |h| ⇒ f∗(t) ≤ h∗(t),

(f + g)∗(t) ≤ f∗(λt) + g∗((1− λ)t), t ∈ [0,∞), λ ∈ [0, 1].

(f + c)∗(t) ≤ f∗(t) + |c|.

A very useful connection between the median and the decreasing rearrangement is the following:

Lemma 6.4. The following estimate holds for all λ ∈ (0, 1
2 ) and all medians mf (Q):

|mf (Q)| ≤ (f1Q)∗(λ|Q|).

Proof. The right side is the infimum of {α ≥ 0 : |Q ∩ {|f | > α}| ≤ λ|Q|}. It suffices to prove that
if α < |mf (Q)|, then it is not in this set, for this implies that the infimum of the set is at least
|mf (Q)|.

So let 0 ≤ α < |mf (Q)|, wheremf (Q) is a median. We prove that |Q∩{|f | > α}| ≥ 1
2 |Q| > λ|Q|.

Suppose first that mf (Q) > 0. Then

|Q ∩ {|f | > α}| ≥ |Q ∩ {f > α}| ≥ |Q ∩ {f ≥ mf (Q)}| = |Q| − |Q ∩ {f < mf (Q)}| ≥ 1
2 |Q|.

If mf (Q) < 0, then α < |mf (Q)| = −mf (Q) implies −α > mf (Q), and hence

|Q ∩ {|f | > α}| ≥ |Q ∩ {f < −α}| ≥ |Q ∩ {f ≤ mf (Q)}| = |Q| − |Q ∩ {f > mf (Q)}| ≥ 1
2 |Q|.

So we are done; of course the case mf (Q) = 0 is trivial from the beginning. �
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Remark 6.5. The limiting case λ = 1
2 of the previous estimate is more tricky. It is only true that

there exists a median mf (Q) such that |mf (Q)| ≤ (f1Q)∗( 1
2 |Q|), but this need not be the case for

all medians. Therefore we prefer to work with the more flexible estimate with λ < 1
2 , where we

do not need to specify the choice of the median which we work with.
Related to this point, there is a slightly careless claim in some papers that “it is easy to see

that |mf (Q)| ≤ (f1Q)∗( 1
2 |Q|)”, and this is also used in the proof of his formula. We will need to

slightly modify the proof to avoid the problems related to this estimate.

6.B. Local oscillations of a function. The following quantity should be understood as a mea-
sure of how well the function f can be approximated by a constant in the cube (or another set of
finite positive measure) Q:

ωλ(f ;Q) := inf
c∈R

(
(f − c)1Q

)∗(λ|Q|).
Finally, it will be convenient to have a variant of ωλ(f ;Q) involving the median rather than an

arbitrary constant. We let

ω̃λ(f ;Q) := sup
mf (Q)

(
(f −mf (Q))1Q

)∗(λ|Q|),
where the supremum (on purpose, not the infimum here!) is taken over all medians mf (Q) of f
on Q. Then

Lemma 6.6 (Quasiminimizer lemma). For λ ∈ (0, 1
2 ), we have

ωλ(f ;Q) ≤ ω̃λ(f ;Q) ≤ 2ωλ(f ;Q).

Before turning to the proof, we record a useful observation for later purposes as well. For a
function f and a constant c, there holds

mf−c(Q) = mf (Q)− c (6.7)

as an equality of sets: the set of all medians of f − c is obtained by translating the set of all
medians of f , as stated. This follows immediately from the definition.

Proof of Lemma 6.6. By triangle inequality, (6.7) and Lemma 6.4, we have

|f −mf (Q)| ≤ |f − c|+ |mf (Q)− c|

= |f − c|+ |mf−c(Q)| ≤ |f − c|+
(
(f − c)1Q

)∗(λ|Q|).
(Here, given a median mf (Q) of f , we have that mf (Q)−c is a median of f−c, and it is important
that the bound of Lemma 6.4 holds for all these medians; this is ensured by λ < 1

2 .)
From the results of Exercise 6.3 it then follows that

(1Q(f −mf (Q)))∗(t) ≤ (1Q(f − c))∗(t) +
(
(f − c)1Q

)∗(λ|Q|),
and substituting t = λ|Q| gives the claim. �

6.C. Lerner’s formula. Now we are fully prepared for our next main result:

Theorem 6.8. For any measurable function f on a cube Q0 ⊂ Rd, we have

|f(x)−mf (Q0)| ≤ 2
∑
L∈L

ωλ(f ;L)1L(x), λ = 2−d−2,

where L ⊂ D(Q0) is sparse: there are pairwise disjoint major subsets E(L) ⊂ L with |E(L)| ≥
γ|L|. In fact, we can take γ = 1

2 .

Here D(Q0) means the dyadic subcubes of Q0 relative to Q0: i.e., the subcubes obtained by
repeatedly bisecting each side of Q0 into halves.

Although we still need to prove Theorem 6.8, let us already look at a motivating application:
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Exercise 6.9. (Of course, you are allowed to use Lerner’s formula!) Let f : Q0 → R (where
Q0 ⊂ Rd) be a function for which the local oscillations are uniformly bounded: ωλ(f ;Q) ≤ K for
all Q ⊆ Q0 (with λ = 2−2−d). Show that in this case f is exponentially integrable on Q0: for some
constants ε > 0 and C <∞ (try to get some estimates for their size; these should depend on the
dimension d and the oscillatory bound K),

1
|Q0|

ˆ
Q0

exp
(
ε|f(x)−mf (Q)|

)
dx ≤ C. (6.10)

(Hint: Note that
∑
L∈L 1L(x) is counts the number of cubes L ∈ L that meet the point x. For

each k = 1, 2, . . ., estimate the size of the set, where this number is equal to k.) Observe that the
local oscillation bound follows in particular if we assume that f ∈ L1(Q0) and

1
|Q|

ˆ
Q

|f(x)− 〈f〉Q|dx ≤ K ′, 〈f〉Q :=
1
|Q|

ˆ
Q

f dy ∀Q ⊆ Q0. (6.11)

((6.11) is known as the BMO condition. The implication (6.11) ⇒ (6.10) is known as the John–
Nirenberg inequality.)

Exercise 6.12. Let L be a sparse collection of dyadic cubes with parameter γ, and let aL ≥ 0
be nonnegative constants. Consider the functions φ :=

∑
L∈L aL1L and Φ := supL∈L aL1L. For

another function g ≥ 0, prove thatˆ
φ · g dx ≤ cγ

ˆ
Φ ·Mdg dx,

where cγ depends only on γ (how?). Deduce (by the duality of Lp spaces) that ‖φ‖p ≤ cγp‖Φ‖p
for p ∈ (1,∞). Denoting

M#
λ,Q0f(x) := sup

Q∈D(Q0)

1Q(x)ωλ(f ;Q),

conclude from Lerner’s formula that

‖1Q0(f −mf (Q0))‖p ≤ cp‖M#
λ,Q0f‖p, λ = 2−2−d, p ∈ (1,∞).

The first step of the proof of Lerner’s formula is as follows:

Lemma 6.13. For any measurable function f on a cube Q0 ⊂ Rd, let Q1
j ∈ D(Q0) be the maximal

dyadic subcubes of Q0 such that

max
Q′∈ch(Q1

j )
|mf (Q′)−mf (Q0)| > (1Q0(f −mf (Q0)))∗(λ|Q0|), (6.14)

where ch(Q) := {Q′ ∈ D(Q) : `(Q′) = 1
2`(Q)} is the collection of dyadic children of Q. Then

1Q0(x)|f(x)−mf (Q0)| ≤ 1Q0(x)ω̃λ(f ;Q0) +
∑
j

1Q1
j
(x)|f(x)−mf (Q1

j )|. (6.15)

Proof. For any family of pairwise disjoint subcubes Q1
j of Q0, we can write the decomposition

1Q0(f −mf (Q0)) = 1Q0\
S
Q1
j
(f −mf (Q0)) +

∑
j

1Q1
j
(mf (Q1

j )−mf (Q0))

+
∑
j

1Q1
j
(f −mf (Q1

j )) =: I + II + III.
(6.16)

We apply this with the cubes Q1
j defined as in the statement of the lemma. From the maximality

it follows that Q1
j in place of Q′ ∈ ch(Q1

j ) satisfies the opposite estimate, namely

|mf (Q)−mf (Q0)| ≤ (1Q0(f −mf (Q0)))∗(λ|Q0|) ≤ ω̃λ(f ;Q0) (6.17)

for Q = Q1
j , and hence the term II in (6.16) is dominated by

|II| ≤ 1S
Q1
j
ω̃λ(f ;Q0).
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On the other hand, if x ∈ Q0 \
⋃
Q1
j , then the estimate (6.17) holds for all dyadic Q 3 x. By the

result of Fujii (Proposition 5.6) we know that mf (Q) → f(x) as Q → x for almost every x, and
hence also the term I in (6.16) satisfies

|I| ≤ 1Q0\
S
Q1
j
ω̃λ(f ;Q0).

Substituting the bounds for I and II into (6.16), observing that 1Q0\
S
Q1
j
+1S

Q1
j

= 1Q0 , we arrive
at the claim of the lemma.

Altogether, we find that

|1Q0(f −mf (Q0))| ≤ 1Q0 · 2ωλ(f ;Q0) +
∑
j

|1Q1
j
(f −mf (Q1

j ))|,

where the terms in the sum are of the same form as the left side, with Q0 replaced by Q1
j , and we

are in a position to iterate. �

Observe that in (6.15) the terms in the sum on the right have exactly the same form as the
expression on the left. This gives us a change to iterate the decomposition.

Lemma 6.18. The maximal dyadic subcubes Q1
j ⊆ Q0 with (6.14) have the estimate∑

j

|Q1
j | ≤

1
2
|Q0|.

Proof. We abbreviate f0 := f −mf (Q0). Then the stopping condition gives for some Q′ ∈ ch(Q1
j )

and any ν ∈ (0, 1
2 ) the estimate

α := (1Q0f0)∗(λ|Q0|) < |mf0(Q′)| ≤ (1Q′f0)∗(ν|Q′|) ≤ (1Q1
j
f0)∗(ν2−d|Q1

j |).

Thus |Q1
j ∩ {|f0| > α}| ≥ ν2−d|Q1

j |, and hence

ν2−d
∑
j

|Q1
j | ≤

∑
j

|Q1
j ∩ {|f0| > α}| ≤ |Q0 ∩ {|f0| > α}| ≤ λ|Q0| = 2−d−2|Q0|.

Letting ν → 1
2 , we get

∑
j

|Q1
j | ≤ 1

2 |Q
0|, as claimed. �

Proof of Theorem 6.8 (Lerner’s formula). A combination of the two lemmas shows that, given
Q0, there exist disjoint dyadic subcubes Q1

j such that

1Q0 |f −mf (Q0)| ≤ 1Q0 ω̃λ(f,Q0) +
∑
j

1Q1
j
|f −mf (Q1

j )|,
∑
j

|Q1
j | ≤

1
2
|Q0|.

We apply the same result to each Q1
j in place of Q0, yielding further subcubes Q2

i such that

1Q0 |f −mf (Q0)| ≤ 1Q0 ω̃λ(f,Q0) +
∑
j

1Q1
j
ω̃λ(f ;Q1

j ) +
∑
i

1Q2
i
|f −mf (Q2

i )|,

where ∑
i:Q2

i⊆Q1
j

|Q2
i | ≤

1
2
|Q1

j |,
∑
i

|Q2
i | =

∑
j

∑
i:Q2

i⊆Q1
j

|Q2
i | ≤

1
2

∑
j

|Q1
j | ≤

1
4
|Q0|.

By induction, we obtain consecutive generations of stopping cubes Qnj such that for every N ,

1Q0 |f −mf (Q0)| ≤
N−1∑
n=0

∑
j

1Qnj ω̃λ(f,Qnj ) +
∑
i

1QNi |f −mf (QNi )|, (6.19)

where ∑
i:QNi ⊆Q

N−1
j

|QNi | ≤
1
2
|QN−1

j |,
∑
i

|QNi | ≤ 2−N |Q0|. (6.20)

The “error term” (i.e., the last term) in (6.19) is supported on ΩN :=
⋃
iQ

N
i whose measure is

bounded by |ΩN | ≤ 2−N |Q0|. Note also that ΩN ⊆ ΩN−1 by the construction. If we pass to the
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limit N → ∞ in (6.19), we see that the limit of the error term is supported on the intersection
Ω∞ =

⋂∞
N=1 ΩN . Since |Ω∞| ≤ |ΩN | ≤ 2−N |Q0| for any N , this has measure zero. Thus, in the

limit (and by the Quasiminimizer Lemma), we deduce that

1Q0 |f −mf (Q0)| ≤
∞∑
n=0

∑
j

1Qnj ω̃λ(f,Qnj ) ≤ 2
∞∑
n=0

∑
j

1Qnj ωλ(f,Qnj ) a.e.

It only remains to check that the collection L := {Qnj }n,j is sparse. But this is immediate from
(6.20), since it shows that

E(Qnj ) := Qnj \
⋃

i:Qn+1
i ⊆Qnj

Qn+1
i

satisfies |E(Qnj )| ≥ 1
2 |Q

n
j |, and clearly these sets are pairwise disjoint. �

Remark 6.21. Our proof of Lerner’s formula actually provided a slightly stronger form of sparse-
ness; namely, the disjoint parts E(L) are not just arbitrary subsets of L, but they are given
by

E(L) = Ė(L) := L \
⋃

L′∈L
L′(L

L′.

It is not automatic from the definition of sparseness that the sets E(L) can be chosen to have this
form. For instance, the collection L = {[0, 1), [0, 1

2 ), [ 1
2 , 1)} is 1

2 -sparse (the disjoint parts may be
taken to be {[ 1

4 ,
3
4 ), [0, 1

4 ), [ 3
4 , 1)}), but Ė([0, 1)) = [0, 1) \ ([0, 1

2 ) ∪ [ 1
2 , 1)) = ∅.

We say that L ⊂ D is strongly γ-sparse, if |Ė(L)| ≥ γ|L| for all L ∈ L . We say that L
satisfies the Carleson condition with Carleson constant K if∑

L′⊆L
L′∈L

|L′| ≤ K|L| ∀L ∈ L .

Note that K ≥ 1, since the sum contains at least the term |L|.

Exercise 6.22. Prove that if L is γ-sparse, then it satisfies the Carleson condition with K ≤ 1/γ.
Prove that this bound is optimal in the following sense: for every γ ∈ (0, 1], give an example of a
collection L that is (even strongly) γ-sparse and that Carleson constant exactly K = 1/γ. (Hint
for the example: think about the Cantor set.)

Exercise 6.23. Let L be a collection that satisfies the Carleson condition with constant K, and
let all L ∈ L be contained in a single maximal L0 ∈ L . Prove that, for a finite N depending only
on K, there is a disjoint decomposition L =

⋃N
n=0 Ln ∪L ′, where each Ln is pairwise disjoint,

and ∣∣∣ ⋃
L′∈L ′

L′
∣∣∣ ≤ 1

2
|L|.

Hint: Let L0 := {L}, and set first L ′ := L \L0 (this might be redefined later). Then (why?)

θ :=
1
|L|

∣∣∣ ⋃
L′∈L ′

L′
∣∣∣ ≤ 1
|L|

∑
L′∈L ′

|L′| ≤ K − 1. (6.24)

If θ ≤ 1
2 , we are done. If θ >

1
2 , let L1 consist of all maximal elements in L ′, and remove L1 from

L ′. Check that with this new L ′, the bound (6.24) holds with K− 3
2 in place of K− 1. Consider

again the options that θ ≤ 1
2 and θ > 1

2 , and continue similarly. Write down the induction step
and show that the process must terminate (with θ ≤ 1

2 ) after boundedly many steps, and give an
estimate for this number. Show that this gives the required decomposition.

Exercise 6.25. Let L ⊂ D be without infinite increasing chains (so that each L ∈ L is contained
in some maximal L∗ ∈ L ∗). If L satisfies the Carleson condition, prove that L can be divided
into a bounded number of subcollections that are strongly 1

2 -sparse. (Hint: Apply the result of
the previous exercise recursively, starting from the maximal cubes L∗ ∈ L ∗.)
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7. Calderón–Zygmund operators

Definition 7.1. A Calderón–Zygmund operator (CZO) is a bounded linear operator T : L2(Rd)→
L2(Rd) with the integral representation

Tf(x) =
ˆ

Rd
K(x, y)f(y) dy, x /∈ spt f,

where K : Rd × Rd \ {(x, x) : x ∈ Rd} is called the kernel and satisfies the standard estimates

|K(x, y)| ≤ C

|x− y|d
, (7.2)

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C |x− x
′|α

|x− y|d+α
, if |x− x′| < 1

2
|x− y|, (7.3)

where α ∈ (0, 1] is the regularity exponent.

Lemma 7.4. The conditions (7.2) and (7.3) are equivalent to (7.2) and (7.5), where the last
condition is defined by

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C|x− x′|α

min(|x− y|, |x′ − y|)d+α
. (7.5)

Note that (7.5) is assumed for all x, x′, y, in contrast to (7.3), which is only assumed for certain
triplets x, x′, y.

Proof. We consider two cases:

Case |x−x′| < 1
2 |x−y|. Then |x′−y| ≤ |x−y|+ |x′−x| < 3

2 |x−y| and |x
′−y| ≥ |x−y|−|x′−x| >

1
2 |x − y|, so that |x − y| h |x′ − y| and in particular min(|x − y|, |x′ − y|) h |x − y|. Thus the
estimates (7.3) and (7.5) are exactly the same estimate in this case.

Case |x− x′| ≥ 1
2 |x− y|. Then |x′ − y| ≤ |x′ − x|+ |x− y| ≤ 3|x− x′|, so that |x− x′| dominates

both |x − y| and |x′ − y| (up to numerical constants) in this case. Since (7.3) says nothing now,
we need to show that (7.5) follows from (7.2). Indeed, by (7.2),
|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ |K(x, y)|+ |K(x′, y)|+ |K(y, x)|+ |K(y, x′)|

≤ C

|x− y|d
+

C

|x′ − y|d
.

Moreover, since |x− x′|/|x− y| ≥ 1
2 , we have

C

|x− y|d
≤ C

|x− y|d
( |x− x′|
|x− y|

)α
= C

|x− x′|α

|x− y|d+α

and similarly C/|x′ − y|d ≤ C|x′ − x|α/|x′ − y|d+α. Finally, observe that
1

|x− y|d+α
+

1
|x′ − y|d+α

≤ 2 max
( 1
|x− y|d+α

,
1

|x′ − y|d+α

)
=

2
min(|x− y|, |x′ − y|)d+α

,

which completes the proof. �

Remark 7.6. A typical case, where we use the regularity of the kernel, is as follows. Let Q be
a cube, x, x′ ∈ Q and y ∈ (2Q)c. (We denote by 2Q the cube with the same centre and double
the sidelength of Q.) In this case |x − x′| ≤

√
d`(Q) (which is the length of the diagonal of Q),

whereas |x− y|, |x′ − y| ≤ 1
2`(Q), where equality can be (almost) achieved, so that the condition

of (7.3), that |x− x′| < 1
2 |x− y|, is not necessarily guaranteed. However, the condition (7.5) can

be conveniently applied. Notice that

|x− y| ≤ |x− x′|+ |x′ − y| ≤
√
d`(Q) + |x′ − y| ≤ (2

√
d+ 1)|x′ − y|

and by symmetry also |x′ − y| ≤ (2
√
d + 1)|x − y| so in fact |x − y| h |x′ − y|, up to numerical

constants. Thus we find that

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C `(Q)α

|x′ − y|d+α
, if x, x′ ∈ Q, y ∈ (2Q)c. (7.7)
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Lemma 7.8. Let b be a function with spt b ⊆ Q and
´
Q
bdx = 0. If T is a Calderón–Zygmund

operator, then ˆ
(2Q)c

|Tb|dy ≤ C‖b‖1.

Proof. We can writeˆ
(2Q)c

|Tb(y)|dy =
ˆ

(2Q)c

∣∣∣ˆ
Q

K(y, x)b(x) dx
∣∣∣ dy

=
ˆ

(2Q)c

∣∣∣ˆ
Q

[K(y, x)−K(y, cQ)]b(x) dx
∣∣∣dy,

where cQ is the centre of Q, and we used the observation thatˆ
Q

K(y, cQ)b(x) dx = K(y, cQ)
ˆ
Q

b(x) dx = 0.

Using (7.7) with x′ = cQ, we find thatˆ
Q

|K(y, x)−K(y, cQ)||b(x)|dx ≤ C `(Q)α

|y − cQ|d+α

ˆ
Q

|b(x)|dx.

It remains to integrateˆ
(2Q)c

dy
|y − cQ|d+α

≤ C
ˆ ∞
`(Q)

rd−1 dr
rd+α

= C

ˆ ∞
`(Q)

r−1−α dr = C
∣∣∣∞
`(Q)

r−α

−α
=
C

α
`(Q)−α,

where we changed to polar coordinates centred at cQ, and observed that (2Q)c ⊆ B(cQ, `(Q))c.
A combination of these estimates proves the claim. �

Exercise 7.9. Let T be an operator whose kernel K(x, y) satisfies Hörmander’s conditionˆ
(2Q)c

|K(y, x)−K(y, x′)|dy ≤ C ∀x, x′ ∈ Q, ∀ cubes Q.

Prove that
(1) The conclusion of Lemma 7.8 is valid for all operators with Hörmander’s condition.
(2) All Calderón–Zygmund operators satisfy Hörmander’s condition.

Theorem 7.10 (Calderón–Zygmund). If T is a Calderón–Zygmund operator, then T : L1(Rd)→
L1,∞(Rd) boundedly.

The proof is based on:

Proposition 7.11 (Calderón–Zygmund decomposition). Let f ∈ L1(Rd) and λ > 0. Then there
is a decomposition f = g + b (“good + bad”), where

• The good part satisfies ‖g‖∞ ≤ 2dλ and ‖g‖1 ≤ ‖f‖1.
• The bad part is b =

∑
Q∈Q bQ, where Q is a disjoint collection of dyadic cubes such that∑

Q∈Q

|Q| ≤ 1
λ
‖f‖1, spt bQ ⊆ Q,

ˆ
bQ dx = 0,

ˆ
|bQ|dx ≤ 2

ˆ
Q

|f |dx.

Proof. Let Q be the maximal dyadic cubes Q with the property that |Q|−1
´
Q
|f |dx > λ. Then

they are pairwise disjoint and their union is

Ω :=
⋃
Q∈Q

Q = {Mdf > λ}.

From the weak-type inequality for the maximal function it follows that

|Ω| =
∑
Q∈Q

|Q| = |{Mdf > λ}| ≤ 1
λ
‖f‖1.
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The good part. We define

g := 1Ωcf +
∑
Q∈Q

1Q〈f〉Q, 〈f〉Q :=
1
|Q|

ˆ
Q

f dx.

For almost every x ∈ Ωc, we have

|g(x)| = |f(x)| = lim
Q∈D, Q3x
`(Q)→0

∣∣∣ 1
|Q|

ˆ
Q

f dy
∣∣∣ ≤ sup

Q∈D
Q3x

∣∣∣ 1
|Q|

ˆ
Q

f dy
∣∣∣ ≤Mdf(x) ≤ λ,

since Ωc = {Mdf ≤ λ}.
If x ∈ Ω, then x ∈ Q for exactly one Q ∈ Q, and then g(x) = 〈f〉Q. Since Q is maximal with

the property 〈|f |〉Q > λ, its parent dyadic cube Q(1) satisfies the opposite inequality 〈|f |〉Q(1) ≤ λ,
and hence

|〈f〉Q| ≤ 〈|f |〉Q =
1
|Q|

ˆ
Q

|f |dy ≤ 2d

|Q(1)|

ˆ
Q(1)
|f |dy ≤ 2dλ.

Thus |g(x)| = |〈f〉Q| ≤ 2dλ also for x ∈ Ω.
For the L1 bound, note thatˆ

Rd
|g|dx =

ˆ
Ωc
|f |dx+

∑
Q∈Q

|Q||〈f〉Q| ≤
ˆ

Ωc
|f |dx+

∑
Q∈Q

ˆ
Q

|f |dx =
ˆ

Rd
|f |dx.

The bad part. To have f = g + b, this has to be defined by

b :=
∑
Q∈Q

1Q(f − 〈f〉Q) =:
∑
Q∈Q

bQ.

The required properties of bQ, namely spt bQ ⊆ Q,
´
bQ dx = 0 and ‖bQ‖1 ≤ ‖1Qf‖1, are immedi-

ate to check. �

Proof of Theorem 7.10. Given f ∈ L1(Rd) and λ > 0, we need to estimate |{|Tf | > λ}|. We write
the Calderón–Zygmund decomposition f = g + b and observe that

|{|Tf | > λ}| ≤ |{|Tg| > 1
2λ}|+ |{|Tb| >

1
2λ}|

≤ |{|Tg| > 1
2λ}|+ |2Ω|+ |{|Tb| > 1

2λ} \ 2Ω| =: I + II + III,
(7.12)

where 2Ω :=
⋃
Q∈Q 2Q for the cubes appearing in the Calderón–Zygmund decomposition.

Term I. This uses the L2-bound of T . We have

|{|Tg| > 1
2λ}| =

ˆ
{|Tg|> 1

2λ}
dx ≤

ˆ ( |Tg|
1
2λ

)2

dx =
4
λ2

ˆ
|Tg|2 dx ≤ C

λ2

ˆ
|g|2 dx

≤ C

λ2

ˆ
λ|g|dx =

C

λ
‖g‖1 ≤

C

λ
‖f‖1.

Term II. This uses only the properties of the Calderón–Zygmund cubes:

|2Ω| ≤
∑
Q∈Q

|2Q| =
∑
Q∈Q

2d|Q| ≤ 2d

λ
‖f‖1.

Term III. This is the most difficult part, which uses the kernel bounds for the Calderón–Zygmund
operator. We begin with

|{|Tb| > 1
2λ} \ 2Ω| =

ˆ
{|Tb|> 1

2λ}\2Ω

dx ≤
ˆ

(2Ω)c

|Tb|
1
2λ

dx =
2
λ

ˆ
(2Ω)c

|Tb|dx

≤ 2
λ

∑
Q∈Q

ˆ
(2Ω)c

|TbQ|dx ≤
2
λ

∑
Q∈Q

ˆ
(2Q)c

|TbQ|dx,
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where in the last step we observed that 2Q ⊆ 2Ω implies (2Ω)c ⊆ (2Q)c. Lemma 7.8 shows that´
(2Q)c

|TbQ|dx ≤ C‖bQ‖1, and then by the properties of the bad part we conclude that

|{|Tb| > 1
2λ} \ 2Ω| ≤ C

λ

∑
Q∈Q

‖bQ‖1 ≤
C

λ
‖f‖1.

We have shown that all three terms in (7.12) have an upper bound Cλ−1‖f‖1, and this is what
we had to prove. �

The next result about the oscillations of a Calderón–Zygmund operator connects the topics of
this and the previous section.

Proposition 7.13 (Jawerth–Torchinsky [JT85]).

ωλ(Tf,Q) ≤ C
∞∑
k=1

2−kα
1
|2kQ|

ˆ
2kQ

|f |dx.

For the proof, we need a simple relation of the decreasing rearrangement and the L1,∞ norm:

Lemma 7.14.

f∗(t) ≤ 1
t
‖f‖L1,∞ .

Proof. If |{|f | > α}| ≤ t, then f∗(t) (which is the infimum over all such α) is at most α. So it
suffices to check that with α = t−1‖f‖L1,∞ , we have

|{|f | > α}| ≤ 1
α
‖f‖L1,∞ =

t

‖f‖L1,∞
‖f‖L1,∞ = t. �

Exercise 7.15. For any p ∈ (0,∞), the weak Lp “norm” is ‖f‖Lp,∞ := supt>0 t · |{|f | > t}|1/p.
Prove that ‖f‖Lp,∞ ≤ ‖f‖Lp , and estimate f∗(t) in terms of ‖f‖Lp,∞ for any p ∈ (0,∞).

Proof of Proposition 7.13. For x ∈ Q, we have

Tf(x) = T (12Qf)(x) + [T (1(2Q)cf)(x)− T (1(2Q)cf)(cQ)] + const,

where we subtracted and added the same constant const = T (1(2Q)cf)(cQ). Hence

|1Q(x)(Tf(x)− const)| ≤ |T (12Qf)(x)|+ ‖1Q[T (1(2Q)cf)(·)− T (1(2Q)cf)(cQ)]‖∞,

and therefore (using Exercise 6.3)

ωλ(Tf,Q) = inf
c

(1Q(Tf − c))∗(λ|Q|)

≤ (T (12Qf))∗(λ|Q|) + ‖1Q[T (1(2Q)cf)(·)− T (1(2Q)cf)(cQ)]‖∞ = I + II.

By Lemma 7.14 (f∗(t) ≤ t−1‖f‖L1,∞) and Theorem 7.10 (T : L1 → L1,∞), the first term is
estimated by

I = (T (12Qf))∗(λ|Q|) ≤ 1
λ|Q|

‖T (12Qf)∗‖L1,∞ ≤ C

|Q|
‖12Qf‖L1 ≤ C

|2Q|

ˆ
2Q

|f |dx.

The argument for the second term II is similar to the proof of Lemma 7.8: For x ∈ Q,

|T (1(2Q)cf)(x)− T (1(2Q)cf)(cQ)| =
∣∣∣ˆ

(2Q)c
K(x, y)f(y) dy −

ˆ
(2Q)c

K(cQ, y)f(y) dy
∣∣∣

≤
ˆ

(2Q)c
|K(x, y)−K(cQ, y)||f(y)|dy

≤
ˆ

(2Q)c

C`(Q)α

|y − cQ|d+α
|f(y)|dy.
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We then split the integration domain (2Q)c into cubic annuli (2Q)c =
⋃∞
k=2 2kQ \ 2k−1Q, and

observe that |y − cQ| h 2k`(Q) for y ∈ 2kQ \ 2k−1Q. Hence

II ≤
ˆ

(2Q)c

C`(Q)α

|y − cQ|d+α
|f(y)|dy ≤

∞∑
k=2

ˆ
2kQ\2k−1Q

C`(Q)α

(2k`(Q))d+α
|f(y)|dy

≤
∞∑
k=2

C2−kα
1
|2kQ|

ˆ
2kQ

|f(y)|dy.

A combination of the above bounds for I and II gives the asserted bound for ωλ(Tf,Q) ≤
I + II. �

8. The dyadic domination theorem

We formulate the following theorem in the general set-up of a Banach function space. We
postpone its definition for the moment, and content ourselves by pointing out that all Lp(w)
spaces with p ∈ [1,∞) and a weight w ∈ L1

loc(Rd) are particular examples.

Theorem 8.1 (Lerner [Ler13]). Let T be a Calderón–Zygmund operator, f : Rd → R be bounded
and compactly supported, and X be a Banach function space of Rd. Then

‖Tf‖X ≤ cT sup
D,S
‖AS |f |‖X ,

where the supremum is over all 3d dyadic systems

D = Dα =
{

2−k([0, 1)d +m+ (−1)k 1
3α) : k ∈ Z,m ∈ Zd

}
, α ∈ {0, 1, 2}d,

and all 1
2 -sparse subcollections S ⊂ D , and AS is the averaging operator

AS f =
∑
S∈S

1S
|S|

ˆ
S

f dx.

The main applications of this theorem are in weighted norm inequalities. Here is, however, a
simple consequence for unweighted spaces. It is already a nontrivial result, although it could be
proven in many other ways as well:

Exercise 8.2. Prove that ‖AS f‖p ≤ C‖f‖p, where C depends only on p ∈ (1,∞) and the
sparseness parameter γ, but not on the particular sparse collection S ; conclude from Theorem 8.1
that all Calderón–Zygmund operators map T : Lp → Lp for all p ∈ (1,∞). (Hint: Exercise 6.12.)

The proof of Theorem 8.1 begins with the following lemma. We now denote the Hölder exponent
of the kernel of T by β ∈ (0, 1], in order not to confuse it with the parameter α ∈ {0, 1, 2}d that
indexes the different systems of cubes.

Lemma 8.3. If Q0 ⊃ spt f is a cube, then

1Q0 |Tf | ≤ C
∑
L∈L

∞∑
k=0

2−kβ
1L
|2kL|

ˆ
2kL

|f |dx, (8.4)

for a 1
2 -sparse collection L of dyadic subcubes of Q0.

Proof. We apply Lerner’s formula to Tf and Q0. This gives

1Q0 |Tf | ≤ 1Q0 |mTf (Q0)|+
∑
L∈L

2ωλ(Tf ;L)1L,

where L is a 1
2 -sparse subcollection of dyadic subcubes of Q0, with Q0 ∈ L . For the oscillatory

terms, Proposition 7.13 shows that

ωλ(Tf ;L) ≤ C
∞∑
k=1

2−kβ
1
|2kL|

ˆ
2kL

|f |dx.
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For the median term, we can estimate, for ν ∈ (0, 1
2 ),

|mTf (Q0)| ≤ (1Q0Tf)∗(ν|Q0|) ≤ 1
ν|Q0|

‖Tf‖L1,∞ ≤ C

|Q0|
‖f‖L1 =

C

|Q0|

ˆ
Q0
|f |dx,

recalling that spt f ⊆ Q0. This is of the same form as terms bounding ωλ(Tf ;L), with k = 0 and
L = Q0. A combination of these bounds proves the assertion. �

We next recall Exercise 3.3, which says that for any two cubes Q,P , there exist α ∈ {0, 1, 2}d,
and R,S ∈ Dα (same α for both R and S!), such that

R ⊇ Q, 3`(Q) < `(R) ≤ 6`(Q),

S ⊇ P, 3`(P ) < `(S) ≤ 6`(P ).

We apply this with Q = L and P = 2kL. Since the side-lengths of R and S are powers of 2, it
follows that `(S) = 2k`(R). Since R ∩ S ⊇ Q ∩ P = L 6= ∅, it follows that the bigger cube must
contain the smaller, i.e., S ⊇ R. So in fact S = R(k) is the kth dyadic ancestor of R. Summarizing
this argument, we have:

Lemma 8.5. For any cube L and k ∈ N, there is α ∈ {0, 1, 2}d and R ∈ Dα such that R ⊇ L,
R(k) ⊇ 2kL, and `(R) ∈ (3`(L), 6`(L)].

Let us denote the corresponding α and R by α(L, k) and R(L, k) ∈ Dα(L,k). For this R =
R(L, k), we have

1L ·
1
|2kL|

ˆ
2kL

|f |dx ≤ 1R ·
6d

|R(k)|

ˆ
R(k)
|f |dx.

We use this estimate and reorganize the sum in (8.4) according to the value of α(L, k) ∈ {0, 1, 2}d,
and then according to the value of R(L, k) ∈ Rα

k := {R(L, k) : L ∈ L , α(L, k) = α}:

1Q0 |Tf | ≤ C
∑
L∈L

∞∑
k=0

2−kβ
1L
|2kL|

ˆ
2kL

|f |dx

≤ C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
∑
L∈L

α(L,k)=α

1R(L,k)

|R(L, k)(k)|

ˆ
R(L,k)(k)

|f |dx

= C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
∑
R∈Rα

k

∑
L∈L

α(L,k)=α
R(L,k)=R

1R
|R(k)|

ˆ
R(k)
|f |dx

(8.6)

To proceed, we need a bound for how many different L can give the same R = R(L, k):

Lemma 8.7. For fixed α and R, we have ∑
L∈L

α(L,k)=α
R(L,k)=R

1 ≤ 6d.

Proof. First recall that R(L, k) = R means that `(L) ∈ [ 1
6`(R), 1

3`(R)), and there is a unique
power of 2 in this interval. Thus all L with R(L, k) = R are dyadic cubes of the same sidelength,
so they are pairwise disjoint. They are also all contained in R, and each of them has measure
|L| = `(L)d ≥ ( 1

6`(R))d = 6−d|R|. Thus

|R| ≥
∑
L∈L

α(L,k)=α
R(L,k)=R

|L| ≥
∑
L∈L

α(L,k)=α
R(L,k)=R

6−d|R|.

Division by 6−d|R| gives the claim. �
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Exercise 8.8. The above proof used the fact that `(L) ∈ [ 1
6`(R), 1

3`(R)). Suppose that we only
know that `(L) ≥ 1

6`(R), so we cannot conclude that all L have the same size. Check that the
conclusion of the lemma is still true, although maybe with a different number in place of 6d.

Thus we can continue the computation in (8.6) with

1Q0 |Tf | ≤ C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
∑
R∈Rα

k

1R
|R(k)|

ˆ
R(k)
|f |dx. (8.9)

Lemma 8.10. Each collection Rα
k ⊂ Dα is γ-sparse with γ = 2−16−d.

Proof. By definition, for every R ∈ Rα
k , there exists at least one L ∈ L such that R = R(L, k).

Let us choose one such L and denote it by L(R). Note that L(R) 6= L(R′) if R 6= R′. We can
then define E(R) := E(L(R)). These sets are pairwise disjoint (by the property of the sets E(L),
L ∈ L ), and moreover

|E(R)| = |E(L(R))| ≥ 1
2
|L(R)| ≥ 1

2
1
6d
|R|. �

We are in a good position towards Lerner’s dyadic domination theorem, but there is still work
to do. At this point, the nature of the considerations changes slightly, and we begin a new section:

9. Duality and dyadic operators

The bound (8.9) with Lemma 8.10 is as far as we can proceed with a pointwise estimate. But
recall that we are eventually interested in a norm inequality, and thus we next estimate the integral
pairing ∣∣∣ ˆ Tf · g dx

∣∣∣ ≤ ˆ |Tf | · |g|dx,
where g is another bounded compactly supported function. If we take Q0 big enough to also
contain the support of g, thenˆ

|Tf | · |g|dx =
ˆ

1Q0 |Tf | · |g|dx

≤ C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
∑
R∈Rα

k

1
|R(k)|

ˆ
R(k)
|f |dy ·

ˆ
R

|g|dx

= C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
ˆ
|f |
( ∑
R∈Rα

k

1R(k)

|R(k)|

ˆ
R

|g|dx
)

dy

=: C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ
ˆ
|f | ·Aαk |g|dy.

(9.1)

We next analyse the operator Aαk , or more generally any

AS ,kg :=
∑
S∈S

1S(k)

|S(k)|

ˆ
S

g dx

=
∑
Q∈D

∑
S∈S
S(k)=Q

1Q
|Q|

ˆ
S

g dx =
∑
Q∈D

1Q
|Q|

ˆ
Q

ηQg dx, ηQ :=
∑
S∈S
S(k)=Q

1S ,
(9.2)

where S ⊂ D is γ-sparse, D is a dyadic system, and k ∈ N. (Of course, Aαk corresponds to the
case Rα

k ⊂ Dα, which is 2−16−d-sparse.) Note that the AS in the dyadic domination theorem
that we are trying to prove corresponds to the case k = 0 in the above notation AS ,k. Thus we
still need to do something to reduce everything to this case.

Lemma 9.3. ‖AS ,kf‖p ≤ γ−1pp′‖f‖p for p ∈ (1,∞).

Note in particular that the estimate is independent of k.
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Proof. We have ˆ
AS ,kf · hdx =

∑
S∈S

1
|S(k)|

ˆ
S(k)

hdx · 1
|S|

ˆ
S

f dx · |S|

≤
∑
S∈S

inf
y∈S(k)

Mdh(y) · inf
z∈S

Mdf(z) · 1
γ

ˆ
E(S)

1 dx

≤ 1
γ

∑
S∈S

ˆ
E(S)

Mdh(x)Mdf(x) dx

≤ 1
γ

ˆ
Rd
Mdh(x)Mdf(x) dx

≤ 1
γ
‖Mdh‖p′‖Mdf‖p ≤

1
γ
· p‖h‖p′ · p′‖f‖p.

Taking the supremum over ‖h‖p′ ≤ 1 and using the other direction of Lp duality, we find that
‖AS ,kf‖p ≤ pp′/γ. �

Proposition 9.4. ‖AS ,kf‖L1,∞ ≤ c(1 + k)‖f‖L1 , where c = cγ .

Here we introduce a dependence on k, but a reasonably moderate one. The exponential decay
2−kβ in (9.1) will be enough to take care of this linear growth in k.

Proof. We need to prove that

|{|AS ,kf | > λ}| ≤ c(1 + k)
λ

‖f‖1.

We use again the Calderón–Zygmund decomposition to write f = g + b, where ‖g‖∞ ≤ 2dλ and
‖g‖1 ≤ ‖f‖1, where as the bad part satisfies

b =
∑
Q∈Q

bQ, bQ = 1Q(f − 〈f〉Q), |Ω| :=
∣∣∣ ⋃
Q∈Q

Q
∣∣∣ =

∑
Q∈Q

|Q| ≤ ‖f‖1
λ

,

where the cubes Q ∈ Q are pairwise disjoint cubes in the same dyadic system D that contains the
sparse collection S .

We estimate

|{|AS ,kf | > λ}| ≤ |{|AS ,kg| > 1
2λ}|+ |Ω|+ |{|AS ,kb| > 1

2λ} ∩ Ωc| =: I + II + III.

For I, we have

I ≤
ˆ ( |AS ,kg|

1
2λ

)2

dx =
4
λ2
‖AS ,kg‖22 ≤

C

λ2

ˆ
|g|2 dx ≤ C

λ2

ˆ
λ|g|dx ≤ C

λ
‖f‖1

by the L2-boundedness of AS ,k and the properties of the good part. Of course II ≤ ‖f‖1/λ by
the properties of the decomposition. Hence we only need to estimate III.

For this, we have

III ≤
ˆ

Ωc

|AS ,kb|
1
2λ

dx ≤ 2
λ

∑
Q∈Q

ˆ
Ωc
|AS ,kbQ|dx ≤

2
λ

∑
Q∈Q

ˆ
1Qc |AS ,kbQ|dx.

Now let us look at

1QcAS ,kbQ = 1Qc
∑
R∈D

1R
|R|

ˆ
R

ηRbQ dx.

For the cube R to contribute to this sum, there are two obvious requirements:
• R∩Q 6= ∅, since otherwise the domain of integration R does not meet the support of the

function bQ.
• R ∩Qc 6= ∅, since otherwise the product of indicators 1Qc1R is zero.
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The only way that a dyadic R meets both Q and Qc is that R ) Q.
But there is yet another, slightly less trivial condition: Since bQ is supported on Q and its

integral is zero, ηR must not be constant on Q (since if ηR = c throughout Q, then
´
R
ηRbQ dx =´

Q
ηRbQ dx = c

´
Q
bQ dx = c · 0 = 0). But observe from the defining formula (9.2) that ηR, as a

sum of indicators, is constant on dyadic cubes that have sidelength 2−k`(R) (or smaller). So for
nonzero contribution, we must have `(R) < 2k`(Q), and previously we observed that we must also
have R ) Q. This only leaves a finite set of possibilities: R = Q(j) is a dyadic ancestor of Q that
preceeds Q by j generations, where j = 1, . . . , k − 1. So in factˆ

1Qc |AS ,kbQ|dx =
ˆ ∣∣∣1Qc ∑

R∈D

1R
|R|

ˆ
R

ηRbQ dy
∣∣∣ dx

=
ˆ ∣∣∣1Qc ∑

R=Q(j)

j=1,...,k−1

1R
|R|

ˆ
R

ηRbQ dy
∣∣∣dx

≤
∑

R=Q(j)

j=1,...,k−1

ˆ
R

|bQ|dy ≤ (k − 1)+‖bQ‖1 ≤ 2(k − 1)+‖1Qf‖1.

(Here (k−1)+ := max(k−1, 0); if k = 0, the sum is empty, but we still don’t get a negative upper
bound!) From the disjointness of the cubes Q ∈ Q it then follows that

III ≤ 2
λ

∑
Q∈Q

ˆ
1Qc |AS ,kbQ|dx. ≤

C

λ
(k − 1)+

∑
Q∈Q

‖1Qf‖1 ≤
C

λ
(k − 1)+‖f‖1,

and the combination of the bounds for I, II and III completes the proof. �

Exercise 9.5. Suppose that S is a sparse collection with the additional property that its scales
are k-separated, i.e.: for some fixed j ∈ {0, 1, . . . , k − 1}, all S ∈ S have length of the form
`(S) = 2nk+j , where n ∈ Z is a variable that can be different for different S, but j (and k) is
the same fixed quantity for all S. Prove that in this case the bound of Proposition 9.4 can be
improved to ‖AS ,kf‖L1,∞ ≤ c‖f‖L1 , i.e., a bound independendent of k. (Hint: you don’t need to
redo the whole proof; concentrate on the part, where the k-dependence came from.)

Corollary 9.6.

ωλ(AS ,kf ;L) ≤ c(1 + k)
|L|

ˆ
L

|f |dx.

Proof. We have

1LAS ,kf = 1L
∑
Q∈D

1Q
|Q|

ˆ
Q

ηQf dx =
∑
Q⊆L

1Q
|Q|

ˆ
Q

ηQf dx+ 1L
∑
Q)L

1
|Q|

ˆ
Q

ηQf dx,

where we used the fact that 1L1Q 6= 0 only if Q ⊆ L or Q ) L. A key point is that the last term
is 1L times a constant c (not a function), so that, with this constant,

1L|AS ,kf − c| ≤
∣∣∣ ∑
Q⊆L

1Q
|Q|

ˆ
Q

ηQf dx
∣∣∣ ≤ ∑

Q⊆L

1Q
|Q|

ˆ
Q

ηQ1L|f |dx ≤ AS ,k(1L|f |).

Thus
ωλ(AS ,kf ;L) := inf

c
(1L(AS ,kf − c))∗(λ|L|)

≤ (AS ,k(1Q|f |))∗(λ|L|) ≤
1

λ|L|
‖AS ,k(1L|f |)‖L1,∞ ≤ c(1 + k)

|L|
‖1Lf‖L1 ,

which is what we claimed. �

We now return to the formula (9.1). We want to apply Lerner’s formula to the function
Aαk |g| = ARα

k ,k
|g|.

Lemma 9.7. Every cube R(k) with R ∈ Rα
k is contained in a maximal R∗ of the same form.
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Proof. Recall that Rα
k = {R(L, k) : L ∈ L , α(L, k) = α}. Since L is bounded from above (by

the initial cube Q0) and `(R(L, k)) ≤ 6`(L), the cubes in Rα
k also have sidelengths bounded from

above. And then so do the cubes R(k), R ∈ Rα
k , for any fixed k. Thus there cannot be infinite

increasing chains among these cubes, and hence each of them will be contained in a maximal
one. �

In every such R∗ as in the Lemma, we apply Lerner’s formula to Aαk |g| to obtain a 1
2 -sparse

collection S (R∗) of dyadic subcubes of R∗ such that

1R∗Aαk |g| ≤ 1R∗ |mAαk |g|(R
∗)|+

∑
S∈S (R∗)

2ωλ(Aαk |g|;S) · 1S .

For the median term, we have

|mAαk |g|(R
∗)| ≤ (1R∗Aαk |g|)∗( 1

4 |R
∗|) = (Aαk (1R∗ |g|))∗( 1

4 |R
∗|)

≤ 1
1
4 |R∗|

‖Aαk (1R∗ |g|)‖L1,∞ ≤ c(1 + k)
|R∗|

‖1R∗g‖L1 ,

where the equality is easy by recalling the definition of Aαk and the maximality of R∗ among the
relevant cubes R(k) appearing there.

The oscillatory terms we already estimate above by∑
S∈S (R∗)

2ωλ(Aαk |g|;S) · 1S . ≤ c(1 + k)
∑

S∈S (R∗)

1S
|S|

ˆ
S

|f |dx,

and the estimate for the median term was exactly of the same form and can be absorbed in this
sum. So altogether

1R∗Aαk |g| ≤ c(1 + k)
∑

S∈S (R∗)

1S
|S|

ˆ
S

|f |dx,

where S (R∗) is a 1
2 -sparse collection of subcubes of R∗. If we sum over all maximal R∗, on the left

we get simply Aαk |g|, and on the right a similar sum with S α
k =

⋃
R∗ S (R∗) in place of S (R∗).

Now S α
k is also 1

2 -sparse, since the maximal cubes R∗ of the different S (R∗) are pairwise disjoint:

Exercise 9.8. Let Si, i ∈ I , be γ-sparse collections such that Si ∩ Sj = ∅ whenever Sk ∈ Sk

for both k ∈ {i, j} ⊆ I and i 6= j. Prove then
⋃
i∈I Si is also γ-sparse. (Hint: This is easy.)

Substituting back to (9.1), we get
ˆ
|Tf | · |g|dx ≤ C

∑
α∈{0,1,2}d

∞∑
k=0

2−kβ
ˆ
|f | ·Aαk |g|dy

≤ C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ(1 + k)
∑
S∈Sα

k

1
|S|

ˆ
S

|f |dx ·
ˆ
S

|g|dy

≤ C
∑

α∈{0,1,2}d

∞∑
k=0

2−kβ(1 + k) sup
D,S

∑
S∈S

1
|S|

ˆ
S

|f |dx
ˆ
S

|g|dy

≤ C sup
D,S

∑
S∈S

1
|S|

ˆ
S

|f |dx
ˆ
S

|g|dy,

(9.9)

where the supremum is over all relevant dyadic systems and their 1
2 -sparse subcollections, and in

the last step we observed that the sum over k converges and the sum over α is finite in any case.
The estimate (9.9) is almost as useful as Theorem 8.1 itself.

Lemma 9.10. Let w : Rd → (0,∞), and denote Lp(w) := Lp(w dx) the Lp-space with respect to
the weighted measure w dx. Then

‖f‖Lp(w) = sup
{∣∣∣ˆ f · hdx

∣∣∣ : ‖h‖Lp′ (w1−p′ ) ≤ 1
}
, p ∈ (1,∞). (9.11)
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Proof. Recall that

‖f‖Lp(µ) = sup
{∣∣∣ˆ f · g dµ

∣∣∣ : ‖g‖Lp′ (µ) ≤ 1
}

for any σ-finite measure µ and p ∈ (1,∞). We apply this to a weighted measure dµ = w dx to
find that

‖f‖Lp(w) = sup
{∣∣∣ ˆ f · g · w dx

∣∣∣ : ‖g‖Lp′ (w) ≤ 1
}
,

which looks a bit different than the claim. Now denote h := g ·w, so that g = h/w and ‖g‖Lp′ (w) =
‖h/w‖Lp′ (w) = ‖h‖Lp′ (w1−p′ ). Observe that g 7→ h is an isometric bijection between the spaces
Lp
′
(w) and Lp

′
(w1−p′) by this computation. Thus the previous display is actually the same as the

claim of the lemma after the change of variable h = g · w. �

Exercise 9.12. Show that formula (4.3) is still valid, if we only take the supremum over all
bounded and compactly supported h which satisfy ‖h‖Lp′ (w1−p′ ) ≤ 1. Show that formula is also
true for p = 1 id we replace the condition on h by just requiring that h is compactly supported
and |h| ≤ 1 everywhere.

From (9.9), we can now easily give:

Proof of Theorem 8.1 for X = Lp(w), p ∈ [1,∞). By the previous lemma and exercise, we have

‖Tf‖Lp(w) = sup
h

∣∣∣ˆ Tf · hdx
∣∣∣ ≤ sup

h

ˆ
|Tf | · |h|dx,

where the supremum is over an appropriate set of bounded and compactly supported functions h.
By (9.9) and the other direction of the weighted duality (9.11), we have

sup
h

ˆ
|Tf | · |h|dx ≤ C sup

h
sup
D,S

∑
S∈S

1
|S|

ˆ
S

|f |dx ·
ˆ
S

|h|dy

= C sup
D,S

sup
h

ˆ ( ∑
S∈S

1S
|S|

ˆ
S

|f |dx
)
|h|dy

= C sup
D,S
‖
∑
S∈S

1S
|S|

ˆ
S

|f |dx‖Lp(w) = C sup
D,S
‖AS f‖Lp(w),

and this completes the proof. �

A general Banach function space is essentially just an abstract framework where we can repeat
a similar reasoning.

10. Ap weights and the maximal operator

We next study several inequalities in the weighted spaces Lp(w), where w ∈ L1
loc(Rd) is positive

and finite almost everywhere. The Ap class of weights consists of precisely those weights for which
many such inequalities are valid. Instead of defining this class right away, we shall see how the
Ap condition naturally arises from questions of boundedness for the Hardy–Littlewood maximal
operator

Mf(x) = sup
Q cube
Q3x

1
|Q|

ˆ
Q

|f |dy.

The question we want to address is: What are the weights w for which one of the following
inequalities holds?

‖Mf‖Lp,∞(w) ≤ C‖f‖Lp(w) (10.1)
or

‖Mf‖Lp(w) ≤ C‖f‖Lp(w). (10.2)
Notice that we have the same weight w on both sides of (10.1) and (10.2). This is in contrast to
the Fefferman–Stein inequalities

‖Mf‖L1,∞(w) ≤ C‖f‖L1(Mw), ‖Mf‖Lp,∞(w) ≤ ‖Mf‖Lp(w) ≤ C‖f‖Lp(Mw), p ∈ (1,∞),
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where we have w on the left and Mw on the right. However, these provide a simple sufficient
condition for (10.1) and (10.2): if the weight satisfies

Mw ≤ cw, (10.3)

the (10.1) holds for all p ∈ [1,∞), and (10.2) holds for all p ∈ (1,∞). The condition (10.3) is
called the A1 condition, and we define

[w]A1 :=
∥∥∥Mw

w

∥∥∥
∞

(10.4)

and w ∈ A1 if and only if [w]A1 <∞.
What about necessary conditions? We have the following:

Lemma 10.5. If (10.1) holds for some p ∈ [1,∞), then

[w]Ap ≤ ‖M‖
p
Lp(w)→Lp,∞(w),

where [w]A1 is defined in (10.4), and

[w]Ap := sup
Q cube

( 1
|Q|

ˆ
Q

w
)( 1
|Q|

ˆ
Q

w−1/(p−1)
)p−1

, p ∈ (1,∞).

Proof. Let us abbreviate N := ‖M‖Lp(w)→Lp,∞(w). Recall that

‖f‖Lp,∞(w) = sup
λ>0

λw({|f | > λ})1/p = sup
λ>0

λw({|f | ≥ λ})1/p,

where the first equality is the definition and the second is easy to check. (It is not necessarily true
for a fixed λ, only for the supremum!)

Consider a function f that is nonnegative and supported in a cubeQ, and write λ := |Q|−1
´
Q
f dy.

Then Mf(x) ≥ λ for all x ∈ Q, and thus

‖Mf‖Lp,∞(w) ≥ λw(Q)1/p =
1
|Q|

ˆ
Q

f dy · w(Q)1/p.

Thus (10.1) gives that
1
|Q|

ˆ
Q

f dy · w(Q)1/p ≤ N‖f‖Lp(w) = N
( ˆ

Q

fpw dy
)1/p

. (10.6)

Case p > 1. Basically, we want to make the two integrals equal, i.e., we want that f = fpw, which
means that we would choose f = w−1/(p−1). If we substitute this into (10.6), we get

1
|Q|

ˆ
Q

w−1/(p−1) dy · w(Q)1/p ≤ N
(ˆ

Q

w−1/(p−1) dy
)1/p

.

If (
´
Q
w−1/(p−1) dy)1/p <∞, we can divide both sides by this quantity to get

1
|Q|

(ˆ
Q

w−1/(p−1) dy
)1/p′

· w(Q)1/p ≤ N. (10.7)

Raising to power p and taking the supremum over cubes Q, this gives [w]Ap ≤ Np, as claimed.
However, we do not know a priori whether the division that we made is correct, and need to

proceed more carefully. So we choose instead f = (w + ε)−1/(p−1), which is bounded from above
and thus certainly locally integrable. Then (10.6) gives

1
|Q|

ˆ
Q

(w + ε)−1/(p−1) dy · w(Q)1/p ≤ N
(ˆ

Q

(w + ε)−p/(p−1)w dy
)1/p

≤ N
(ˆ

Q

(w + ε)−p/(p−1)(w + ε) dy
)1/p

= N
(ˆ

Q

(w + ε)−1/(p−1) dy
)1/p

.

Dividing by (
´
Q

(w + ε)−1/(p−1) dy)1/p (which is certainly legal), we arrive at

1
|Q|

(ˆ
Q

(w + ε)−1/(p−1) dy
)1/p′

w(Q)1/p ≤ N.
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Passing to the limit ε→ 0, we obtain (10.7) by dominated convergence, and we complete the proof
as indicated above.

Case p = 1. Now it is not possible to choose f with f = fw, so we take a different approach. Let
f = 1R for a subcube R ⊂ Q. Then (10.6) (with p = 1) gives

|R|
|Q|

w(Q) ≤ Nw(R).

We rearrange this estimate and pass to the limit where R shrinks to a point x ∈ Q. Lebesgue’s
differentiation theorem then guarantees that

w(Q)
|Q|

≤ N lim
R3x

`(R)→0

w(R)
|R|

= N · w(x)

at almost every x ∈ Q. If we consider a countable family Q of cubes (say all cubes with rational
centres and sidelengths), then the union of the exceptional null sets is also a null set, and we find
that for almost every x, the above bound holds for all Q ∈ Q with Q ∈ x. Thus, for almost every
x ∈ Rd, we have

N · w(x) ≥ sup
Q∈Q
Q3x

w(Q)
|Q|

= sup
Q cube
Q3x

w(Q)
|Q|

= Mw(x),

where the equality of the supremums follows easily by observing that the ratio w(Q)/|Q| for
arbitrary cubes can be approximated arbitrarily well by the corresponding ratio for the cubes
Q ∈ Q. But the above bound precisely shows that [w]A1 ≤ N , as claimed. �

The necessary condition thus obtained turns out to be sufficient as well:

Theorem 10.8 (Muckenhoupt [Muc72]). Let w be a weight and p ∈ (1,∞). Then the following
conditions are equivalent:

(1) M : Lp(w)→ Lp,∞(w) boundedly.
(2) M : Lp(w)→ Lp(w) boundedly.
(3) w ∈ Ap

For p = 1, the conditions (1) and (3) are still equivalent.

We already proved case p = 1 completely. For p ∈ (1,∞), Lemma 10.5 shows that (1) ⇒ (3),
whereas (2)⇒ (1) is clear. It remains to prove that (3)⇒ (2), and we observe that it is enough to
do this for the dyadic version Md in place of M . For this, we use an argument of Lerner [Ler08]:

Lemma 10.9 (Lerner).

(Mdf)p−1 ≤ [w]ApM
d
w[(Md

σ(fσ−1))p−1w−1].

Proof. ( 1
|Q|

ˆ
Q

f
)p−1

=
w(Q)
|Q|

(σ(Q)
|Q|

)p−1 |Q|
w(Q)

( 1
σ(Q)

ˆ
Q

fσ−1σ
)p−1

≤ [w]Ap
|Q|
w(Q)

inf
Q

[Md
σ(fσ−1)]p−1

≤ [w]Ap
1

w(Q)

ˆ
Q

[Md
σ(fσ−1)]p−1w−1w.

Taking the supremum over all dyadic Q 3 x gives the assertion. �

After this pointwise bound, the norm inequality is just a question of applying the universal
maximal function estimate:
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Lerner’s proof of Theorem 10.8, (3) ⇒ (2).

‖Mdf‖Lp(w) = ‖(Mdf)p−1‖1/(p−1)

Lp′ (w)

≤ [w]1/(p−1)
Ap

‖Md
w[(Md

σ(fσ−1))p−1w−1]‖1/(p−1)

Lp′ (w)

≤ [w]1/(p−1)
Ap

(
p · ‖(Md

σ(fσ−1))p−1w−1‖Lp′ (w)

)1/(p−1)

= [w]1/(p−1)
Ap

p1/(p−1)‖Md
σ(fσ−1)‖Lp(σ)

≤ [w]1/(p−1)
Ap

p1/(p−1) · p′ · ‖fσ−1‖Lp(σ)

= p1/(p−1) · p′ · [w]1/(p−1)
Ap

‖f‖Lp(w).

A standard calculus optimization shows that p1/(p−1) ≤ e, so altogether

‖Mdf‖Lp(w) ≤ e · p′ · [w]1/(p−1)
Ap

‖f‖Lp(w). �

The proofs given above already indicated a more quantitative formulation of Theorem 10.8,
formulate below:

Theorem 10.10 (Buckley [Buc93]). For a weight w, the following estimates hold:

[w]1/pAp
≤ ‖M‖Lp(w)→Lp,∞(w) ≤ cp[w]1/pAp

, p ∈ [1,∞) (10.11)

‖M‖Lp(w)→Lp(w) ≤ cp[w]1/(p−1)
Ap

, p ∈ (1,∞), (10.12)
and this is sharp in the following sense: if ‖M‖Lp(w)→Lp(w) ≤ φ([w]Ap) for some increasing
positive φ, then φ(t) ≥ ct1/(p−1).

We already proved the lower bound in (10.11), the upper bound in (10.11) for p = 1, and the
bound (10.12). The remaining claims are proven in the following exercises:

Exercise 10.13. Prove the upper bound in (10.11) for p ∈ (1,∞). Hint: Adapt the proof of the
p = 1 case, namely the Fefferman–Stein inequality. After using the condition λ < |Q|−1

´
Q
f , use

Hölder appropriately to estimate
´
Q
f in terms of

´
Q
fpw.

Exercise 10.14. Consider the power weights x ∈ Rd 7→ w(x) = |x|α, where α ∈ R. For p ∈ (1,∞),
prove that w ∈ Ap if and only if −d < α < d(p− 1), and in this range

cp,d[w]Ap ≤
1

(d+ α)(d(p− 1)− α)p−1
≤ Cp,d[w]Ap .

Exercise 10.15. For every ε ∈ (0, 1), consider the function f(x) = 1B(x)|x|ε−d, where B =
B(0, 1) is the unit ball of Rd. Prove that Mf(x) ≥ cdε−1f(x). Conclude that ‖M‖Lp(w)→Lp(w) ≥
cdε
−1 whenever w is a weight such that f ∈ Lp(w). Find a power weight with this property,

and such that [w]Ap ≤ Cp,dε
−(p−1). Use this this example to derive the sharpness claim of Theo-

rem 10.10.

11. A2 weights and Calderón–Zygmund operators

The surprising feature of the Ap class is its universality. We already saw that this same condition
characterizes both the strong and the weak type inequalities for the maximal operator. The next
result shows that the same class is also the correct one for Calderón–Zygmund operators:

Theorem 11.1 (Hunt, Muckenhoupt, Wheeden [HMW73]; Coifman, Fefferman [CF74]). For a
weight w ∈ L1

loc(Rd) and p ∈ (1,∞), the following are equivalent:
(1) w ∈ Ap.
(2) T : Lp(w)→ Lp(w) boundedly for all Calderón–Zygmund operators T .
(3) If d = 1, then H : Lp(w)→ Lp(w) boundedly for the Hilbert transform

Hf(x) = p. v.
ˆ ∞
−∞

f(y) dy
x− y

= lim
ε→0

(ˆ x−ε

−∞
+
ˆ ∞
x+ε

)f(y) dy
x− y

.
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It is immediate to check the kernel K(x, y) = 1/(x − y) of the Hilbert transform satisfies
the Calderón–Zygmund standard estimates. We will take for granted in these lectures that H :
L2(R) → L2(R) is bounded (This can be proven in several different ways; it has been done for
instance in the courses “Martingales and harmonic analysis” and “Singular integrals and the Tb
theorem”.), and therefore H is a Calderón–Zygmund operator. Thus (2) ⇒ (3) is obvious.

In the rest of this section, we prove the implications (3) ⇒ (1) and (1) ⇒ (2) in the case p = 2.

11.A. Dual weight formulation. When studying an inequality of the form

‖Tf‖Lp(w) ≤ N‖f‖Lp(w), (11.2)

it is often convenient to make a substitution f = gσ, where σ is almost everywhere positive and
finite. Then the previous bound takes the form

‖T (gσ)‖Lp(w) ≤ N‖gσ‖Lp(w) = N‖g‖Lp(σpw).

We then want to choose σ so that σpw = σ, i.e., σ = w−1/(p−1), which indeed satisfies the
condition of almost everywhere positivity and finiteness, since w has these properties. With this
choice, observe that the relation f = gσ establishes a one-to-one isometric correspondence between
all f ∈ Lp(w) and all g ∈ Lp(σ). Thus, the bound (11.2) for all f ∈ Lp(w) is equivalent to the
bound

‖T (gσ)‖Lp(w) ≤ N‖g‖Lp(σ) (11.3)

for all g ∈ Lp(σ), where σ = w−1/(p−1) = w1−p′ is the dual weight. Observe that this same dual
weight also appears both in the Ap condition, and in the duality of weighted Lp spaces! By duality,
yet another equivalent form is given by∣∣∣ˆ T (gσ) · hw

∣∣∣ ≤ N‖g‖Lp(σ)‖h‖Lp′ (w). (11.4)

11.B. The necessity of the A2 condition for the Hilbert transform. We study the dual
weight formulation for (11.4) for T = H. Let g and h be supported on disjoint adjacent intervals
I, J of equal length |I| = |J |. Then every x ∈ J is outside the support of g, and we can apply the
kernel representation of the Hilbert transform (without the principal values):∣∣∣ˆ

J

( ˆ
I

g(y)σ(y) dy
x− y

)
h(x)w(x) dx

∣∣∣ ≤ N‖g‖Lp(σ)‖h‖Lp′ (w).

Now let us assume that g and h are nonnegative, and observe that x − y has a constant sign
throughout the double integral: it is positive if J is on the right of I, and negative if J is on the
left of I. Thus x − y = ε|x − y|, where ε = ±1 is a constant. But this constant is killed by the
absolute values outside the integral above, and we conclude thatˆ

J

ˆ
I

g(y)σ(y) dy
|x− y|

h(x)w(x) dx ≤ N‖g‖Lp(σ)‖h‖Lp′ (w).

Observe next that |x − y| ≤ 2|I| (using that x ∈ J , y ∈ I, and these intervals are adjacent and
have equal length), so that 1/|x− y| ≥ 1/(2|I|). Then we choose h = 1J and g = 1I∩{σ≤k} (since
we do not yet know that the dual weight is locally integrable). This gives

1
2|I|

σ(I ∩ {σ ≤ k})w(J) ≤ Nσ(I ∩ {σ ≤ k})1/pw(J)1/p′ .

Suppose that both factors on the right are non-zero. (Their finiteness is automatic, since w ∈ L1
loc

by assumption, and σ(I ∩ {σ ≤ k}) ≤ k|I|.) Dividing both sides, we arrive at

σ(I ∩ {σ ≤ k})1/p′w(J)1/p ≤ 2N |I|.
We can then pass to the limit k →∞ and apply monotone convergence to conclude that

σ(I)1/p′w(J)1/p ≤ 2N |I|.
Since w(J) > 0, this shows in particular that σ(I) < ∞ and thus σ ∈ L1

loc as well. Note that
if J = I, then the above bound (raised to power p and reorganized) would be precisely the Ap
condition for w. However, we now have it for adjacent intervals, not equal intervals.



DYADIC ANALYSIS AND WEIGHTS 37

We now turn to the case p = 2, and show how to derive the A2 condition from

σ(I)w(J) ≤ 4N2|I|2 =: M |I||J |, I, J adjacent intervals of equal length. (11.5)

We need the following geometric observation:

Lemma 11.6. If K = [a, b) ⊂ R is an interval, then we have the disjoint union

{(x, y) ∈ K ×K : x 6= y} =
⋃
I⊆K
dyadic

subinterval

(
(Ileft × Iright) ∪ (Iright × Ileft)

)

Proof. The inclusion ⊇ is easy to see. For the other direction, if x, y ∈ K and x 6= y, then there
is a minimal dyadic subinterval I ⊆ K such that x, y ∈ I. (Indeed, there are some intervals like
this, at least the interval K itself, and there cannot be arbitrarily small such intervals since x 6= y;
thus there is a minimal one among all I that contain both x and y.) Since I is minimal, it cannot
be that both x, y ∈ Iu for u ∈ {left, right}. Thus the only possibility is that x ∈ Iu and y ∈ Iv for
different halves of the interval I. This proves ⊆.

The disjointness follows from the same consideration: if (x, y) ∈ Iu × Iv for u 6= v, u ∈
{left, right}, then I contains both x and y, and it is the minimal interval with this property, thus
unique. �

Now we can prove:

Lemma 11.7. If (11.5) holds for some weights σ,w ∈ L1
loc(R), then they also satisfy

σ(K)w(K) ≤M |K|2

for all intervals K ⊂ R.

Proof. We interpret both the assumption and the claim as estimates for product measures in the
plane, namely, we assume that

(σ × w)(I × J) ≤M |I × J |,

for equal adjacent intervals, where on the right we have the Lebesgue area measure of the square
I × J , and want to prove that

(σ × w)(K ×K) ≤M |K ×K|.

We can apply Lemma 11.6, once we realize that the diagonal {(x, x) : x ∈ K} has area zero, and
therefore also σ × w-measure zero, since this is a locally finite weighted measure σ(x)w(y) dxdy
with respect to the area measure. Thus

(σ × w)(K ×K) = (σ × w)({(x, y) ∈ K ×K : x 6= y})

=
∑
I⊆K
dyadic

subinterval

(
(σ × w)(Ileft × Iright) + (σ × w)(Iright × Ileft)

)

≤
∑
I⊆K
dyadic

subinterval

(
M |Ileft × Iright|+M |Iright × Ileft|

)

= M |{(x, y) ∈ K ×K : x 6= y}| = M |K ×K|. �

Combining the above estimates, we have shown:

[w]A2 ≤ 4 · ‖H‖2L2(w)→L2(w),

which in particular confirms (3) ⇒ (1) of Theorem 11.1 for p = 2.
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11.C. The A2 theorem. We will prove (1) ⇒ (2) (still for p = 2) in the following sharp quanti-
tative form:

Theorem 11.8 (The A2 theorem [Hyt12]). For any Calderón–Zygmund operator T , and any
w ∈ A2, we have

‖Tf‖L2(w) ≤ cT [w]A2‖f‖L2(w).

The proof that we present makes the theorem look rather simple. However, when the theorem
was first proven, Lerner’s dyadic domination theorem was not yet available, and the proof had to
proceed by a different route.

By the dyadic domination theorem, it is enough to prove that

‖AS f‖L2(w) ≤ c‖f‖L2(w),

uniformly for all 1
2 -sparse collection S . By the dual weight formulation, this is equivalent to

showing that ˆ
AS (fσ) · gw ≤ c‖f‖L2(w)‖g‖L2(σ). (11.9)

Proof of (11.9) by Cruz-Uribe, Martell & Pérez [CUMP10].ˆ
AS (fσ) · gw =

∑
S∈S

1
|S|

ˆ
S

fσ ·
ˆ
S

gw

=
∑
S∈S

σ(S)w(S)
|S|2

· 1
σ(S)

ˆ
S

fσ · 1
w(S)

ˆ
S

gw · |S|

≤
∑
S∈S

[w]A2 · inf
y∈S

Md
σf(y) · inf

z∈S
Md
wg(z) · 2|E(S)|

≤ 2[w]A2

∑
S∈S

ˆ
E(S)

Md
σf(x) ·Md

wg(x) dx

≤ 2[w]A2

ˆ
Rd
Md
σf(x) ·Md

wg(x) · σ(x)1/2w(x)1/2 dx

≤ 2[w]A2

( ˆ
Rd

(Md
σf)2σ

)1/2(ˆ
Rd

(Md
wg)2w

)1/2

≤ 2[w]A2 · 2‖f‖L2(σ) · 2‖g‖L2(w) = 8[w]A2‖f‖L2(σ)‖g‖L2(w). �

Note that this proof of (11.9) existed before Theorem 11.8; since the dyadic domination theorem
was not yet available, it was not known that (11.9) can be used to get Theorem 11.8 at that point.
The particular case of the Hilbert transform is now a corollary to Theorem 11.8, but historically,
it was already known earlier:

Theorem 11.10 (Petermichl [Pet07]). For the Hilbert transform H, and any w ∈ A2, we have

‖Hf‖L2(w) ≤ c[w]A2‖f‖L2(w),

and this estimate is sharp in the following sense: if ‖H‖L2(w)→L2(w) ≤ φ([w]A2) for some increas-
ing positive φ, then φ(t) ≥ ct.

Exercise 11.11. Let p ∈ (1,∞). Show that if ‖H‖Lp(w)→Lp(w) ≤ φ([w]Ap), then φ(t) ≥ ct1/(p−1).
(Hint: This is similar to the case of the maximal function. Let f(x) = |x|−α1(−1,0)(x), and
estimate the size of Hf(x) for x ∈ (0, 1). Make a conclusion about the size of ‖H‖Lp(w)→Lp(w) for
w(x) = |x|β for those β for which f ∈ Lp(w).)

Exercise 11.12. Let p ∈ (1,∞). Show that if ‖H‖Lp(w)→Lp(w) ≤ φ([w]Ap), then also φ(t) ≥ ct.
(Hint: Use duality. The Hilbert transform satisfies

´
Hf · g dx = −

´
f · Hg dx; check this by

a formal computation. Use this and the weighted duality to conclude that ‖H‖Lp(w)→Lp(w) =
‖H‖Lp′ (σ)→Lp′ (σ) for the dual weight σ = w1−p′ . Then use the result of the previous exercise.
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A combination of the two exercises shows that ‖H‖Lp(w)→Lp(w) ≤ cp[w]max(1,1/(p−1))
Ap

is the best
possible bound for the Hilbert transform for any p ∈ (1,∞). In the next section, we will prove
this optimal bound by an extrapolation method from Theorem 11.10.

12. The extrapolation theorem of Rubio de Francia

Theorem 12.1. Let T be an operator, not necessarily linear, and r ∈ (1,∞). Suppose that T
satisfies the estimate

‖Tf‖Lr(w) ≤ φr([w]Ar )‖f‖Lr(w)

for all w ∈ Ar and all f ∈ Lr(w), where φr is a nonnegative increasing function. Then it satisfies

‖Tf‖Lp(w) ≤ φp([w]Ap)‖f‖Lr(w)

for all p ∈ (1,∞), all w ∈ Ap and all f ∈ Lp(w), where each φp is a nonnegative increasing
function.

In particular, if φr(t) = ctτ , then φp(t) ≤ cptτ max( r−1
p−1 ,1).

The proof naturally splits into two cases, p ∈ (1, r) and p ∈ (r,∞). We first give the beginning
of the proof, which motivates a certain auxiliary construction that is needed to complete it.

12.A. Proof of Theorem 12.1, case p ∈ (1, r), beginning. In order to use the assumed Lr

inequality, we apply Hölder, after dividing and multiplying by an auxiliary function ψ, yet to be
chosen:

‖Tf‖Lp(w) =
(ˆ ( |Tf |

ψ

)p
· ψpw

)1/p

≤
(ˆ ( |Tf |

ψ

)r
· ψpw

)1/r(ˆ
ψpw

)1/p−1/r

.

Now, we would like to apply the Lr boundedness of T to the first factor, which would require that
ψ−r/pw ∈ Ar, and we would like to estimate the second factor by ‖f‖Lp(w). We try to achieve
this by some ψ = Rf . Thus, we would get

‖Tf‖Lp(w) ≤
(ˆ
|Tf |r(Rf)p−rw

)1/r(ˆ
(Rf)pw

)1/p−1/r

≤ φr
(
[(Rf)p−rw]Ar

)( ˆ
|f |r(Rf)p−rw

)1/r

‖S‖1−p/rLp(w)→Lp(w)

(ˆ
|f |pw

)1/p−1/r

≤ φr
(
[(Rf)p−rw]Ar

)
‖R‖1−p/rLp(w)→Lp(w)

(ˆ
|f |pw

)1/p

,

(12.2)

provided that Rf ≥ |f |, so that (Rf)p−r ≤ |f |p−r in the last step.
Altogether, we would like to have an operator R such that: Rf ≥ |f | pointwise, R is bounded

on Lp(w), and (Rf)p−rw ∈ Ar for all w ∈ Ap. Such an operator is constructed next:

12.B. The Rubio de Francia algorithm. The following general construction is the key to our
problem. It has many other applications as well.

Proposition 12.3 (Rubio de Francia algorithm). For ε > 0, consider the operator

Rg = Rεg :=
∞∑
k=0

εkMkg,

where M0g := |g|, M1g := Mg is the maximal function of g, and Mkg := M(Mk−1g) is the k-fold
iteration of M acting on g. Then this satisfies

(i) |g| ≤ Rg,

(ii) ‖Rg‖Lp(w) ≤
( ∞∑
k=0

εk‖M‖kLp(w)→Lp(w)

)
‖g‖Lp(w),

(iii) [Rg]A1 ≤ ε−1.
In particular, if ε = ε(p, w) := 1

2‖M‖
−1
Lp(w)→Lp(w), then
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(ii’) ‖Rg‖Lp(w) ≤ 2‖g‖Lp(w)

(iii’) [Rg]A1 ≤ 2‖M‖Lp(w)→Lp(w) ≤ cp[w]1/(p−1)
Ap

.

Here (i) says that Rg is bigger than g, but not too much bigger by (ii) or especially (ii’). The
hole point of the construction is (iii) (or (iii’)), which shows that Rg is an A1 weight, with control
on the A1 constant.

Proof. (i) is clear, since Rg is a sum of nonnegative terms, and the zeroth term is |g|. (ii) follows
from the triangle inequality in Lp(w) and iteration of the estimate

‖Mkg‖Lp(w) ≤ ‖M‖Lp(w)→Lp(w)‖Mk−1g‖Lp(w).

To prove (iii), recall that [w]A1 = ‖Mw/w‖∞. And indeed, by the sublinearity of M , we have

M(Rg) ≤
∞∑
k=0

εkMk+1g = ε−1
∞∑
k=0

εk+1Mk+1g = ε−1
∞∑
k=1

εkMkg ≤ ε−1Rg,

so that M(Rg)/Rg ≤ ε−1. �

Remark 12.4. In applications of the Rubio de Francia algorithm, the following reformulation
of the A1 condition is often handy. Recall that the A1 condition says that Mw(x) ≤ [w]A1w(x),
which by the definition of the maximal function is equivalent to

〈w〉Q ≤ [w]A1w(x), 〈w〉Q :=
1
|Q|

ˆ
Q

w

whenever Q is a cube that contains x. Dividing both sides, this transform into

w(x)−α ≤ [w]αA1
〈w〉−αQ , α ≥ 0, x ∈ Q. (12.5)

(Actually, one needs slight care with the fact that the above conditions hold for all Q but only a.e.
x ∈ Q. In the dyadic case there is no problem, since there are only countably many dyadic cubes
altogether. In general, one might like to observe that the A1 condition over all cubes is equivalent
to the same condition, say, for all cubes with rational centres and sidelengths, which is again a
countable family.)

Lemma 12.6. Let 1 < p < r < ∞. Let w ∈ Ap, ε = ε(p, w) and f ∈ Lp(w). Then W :=
(Rf)p−rw = (Rεf)p−rw satisfies [W ]Ar ≤ cr−pp [w](r−1)/(p−1)

Ap
.

Substituting this into (12.2), we obtain

‖Tf‖Lp(w) ≤ φr
(
cr−pp [w](r−1)/(p−1)

Ap

)
· 21−p/r · ‖f‖Lp(w),

which completes the proof of Theorem 12.1 in the case p ∈ (1, r).

Proof of the Lemma. By the definition of Ar, we need to estimate 〈W 〉Q〈W−1/(r−1)〉r−1
Q . By (12.5)

with α = r − p > 0, the first factor is

〈W 〉Q = 〈(Rf)p−rw〉Q ≤ [Rf ]r−pA1
〈Rf〉p−rQ 〈w〉Q,

whereas by Hölder’s inequality, the second factor is

〈W−1/(r−1)〉r−1
Q = 〈(Rf)(r−p)/(r−1)w−1/(r−1)〉r−1

Q

≤ 〈Rf〉r−pQ 〈w−1/(p−1)〉p−1
Q .

Forming the product, the factors involving 〈Rf〉Q cancel out, and we are left with

〈W 〉Q〈W−1/(r−1)〉r−1
Q ≤ [Rf ]r−pA1

〈w〉Q〈w−1/(p−1)〉p−1
Q

≤ (cp[w]1/p−1
Ap

)r−p[w]Ap = cr−pp [w](r−1)/(p−1)
Ap

. �
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12.C. Proof of Theorem 12.1, case p ∈ (r,∞). In the attempt to argue by Hölder’s inequality
as before, we face the problem that “Hölder increases the exponent”, while we now would like to use
information about the smaller exponent r to get bounds for p > r. We circumvent this problem
by duality:

‖Tf‖Lp(w) = sup
{ˆ

|Tf | · g : ‖g‖Lp′ (σ) ≤ 1
}
, σ = w−1/(p−1).

Here it is useful to observe that
[w]1/pAp

= [σ]1/p
′

Ap′
. (12.7)

With a good faith in the Rubio de Francia algorithm R = Rε with ε = ε(p′, σ) so that

ε−1 = 2‖M‖Lp′ (σ)→Lp′ (σ) ≤ cp′ [σ]1/(p
′−1)

Ap′
= cp′ [σ]1/p

′·p′/(p′−1)
Ap′

= cp′ [w]1/p·pAp
= cp′ [w]Ap , (12.8)

we estimateˆ
|Tf | · g ≤

ˆ
|Tf | ·Rg =

ˆ
|Tf | · Rg

w
· w =

ˆ
|Tf | · (Rg

w
)1−u · (Rg

w
)u · w

≤
(ˆ
|Tf |r(Rg

w
)(1−u)rw

)1/r(ˆ
(
Rg

w
)ur
′
w
)1/r′

.

We demand that ur′ = p′, so that u = p′/r′ and

(1− u)r = (1− p′

r′
)r = r − p

p− 1
(r − 1) =

r(p− 1)− p(r − 1)
p− 1

=
p− r
p− 1

.

Thus ˆ
|Tf | · g ≤

(ˆ
|Tf |r(Rg)

p−r
p−1w

r−1
p−1

)1/r(ˆ
(Rg)p

′
w1−p′

)1/r′

≤ φr
(
[W ]Ar

)(ˆ
|f |r(Rg)

p−r
p−1wr/pw

r−p
p(p−1)

)1/r

(2‖g‖Lp′ (σ))
p′/r′

≤ φr
(
[W ]Ar

)(ˆ
|Tf |pw

)1/p(ˆ
(Rg)

p−r
p−1 ·(p/r)

′
w

r−p
p(p−1) ·(p/r)

′)1/r−1/p

2p
′/r′

= φr
(
[W ]Ar

)(ˆ
|Tf |pw

)1/p(ˆ
(Rg)p

′
w−

1
p−1

)1/r−1/p

2p
′/r′

≤ φr
(
[W ]Ar

)(ˆ
|Tf |pw

)1/p

2p
′(1/r−1/p)2p

′/r′ = 2φr
(
[W ]Ar

)
‖Tf‖Lp(w),

whereW := (Rg)
p−r
p−1w

r−1
p−1 . The proof of Theorem 12.1 is then completed by the following Lemma:

Lemma 12.9. Let 1 < r < p <∞, let w ∈ Ap, g ∈ Lp
′
(w1−p′) and R = Rε with ε = ε(p′, w1−p′).

Then W := (Rg)
p−r
p−1w

r−1
p−1 ∈ Ar, and [W ]Ar ≤ cpr[w]Ap .

Proof. We estimate 〈W 〉Q by Hölder’s inequality:

〈W 〉Q ≤ 〈Rg〉(p−r)/(p−1)
Q 〈w〉(r−1)/(p−1)

Q ,

and 〈W−1/(r−1)〉r−1
Q with the help of Rg ∈ A1 via (12.5):

〈W−1/(r−1)〉r−1
Q = 〈(Rg)−

p−r
(p−1)(r−1)w−

1
p−1 〉r−1

Q ≤ [Rg]
p−r
p−1
A1
〈Rg〉−(p−r)/(p−1)

Q 〈w−1/(p−1)〉r−1
Q .

Forming the product, observing that terms with 〈Rg〉Q cancel out, and using [Rg]A1 ≤ ε−1 given
by (12.8), we are left with

〈W 〉Q〈W−1/(r−1)〉r−1
Q ≤ [Rg](p−r)/(p−1)

A1

(
〈w〉Q〈w−1/(p−1)〉p−1

Q

)(r−1)/(p−1)

≤ (cp′ [w]Ap)(p−r)/(p−1)[w](r−1)/(p−1)
Ap

= c
(p−r)/(p−1)
p′ [w]Ap ,

which is what we wanted. �
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13. Some two-weight theory

For the sake of simplicity, we here concentrate on p = 2, although some of the results discussed
have natural extensions to all p ∈ (1,∞).

Recall that the weighted norm inequality

‖Tf‖L2(w) ≤ C‖f‖L2(w)

can be equivalently reformulated as

‖T (fσ)‖L2(w) ≤ C‖f‖L2(σ), (13.1)

where σ = 1/w. However, once we have arrived at this formulation, we may also study (13.1) on
its own right for two arbitrary weights (w, σ), no more assuming the condition that σ = 1/w. This
general two-weight problem has some important particular instances:

13.A. The characterization problem: Describe all pairs of weights (w, σ) so that (13.1) is valid
• for the Hilbert transform T = H, or another particular singular integral operator, or
• for all Calderón–Zygmund operators T .

This is a difficult problem that has been only recently solved in the case of the Hilbert transform
by Lacey, Sawyer, Shen and Uriarte-Tuero [Lac13, LSSUT12]:

Theorem 13.2. The inequality (13.1) holds for T = H, if and only if

‖H(1Iσ)‖L2(w) ≤ C‖1I‖L2(σ) = Cσ(I)1/2, and

‖H(1Iw)‖L2(σ) ≤ C‖1I‖L2(w) = Cw(I)1/2

for all finite intervals I ⊂ R.

That is, one only needs to “test” the estimate (13.1), and its dual version, for all indicators 1I
instead of all functions f . The dual weight formulation (13.1) is also meaningful for general (say,
Radon) measures w, σ instead of weights with respect to the Lebesgue measure. The result of
Lacey et al. also covers many but not all such situations. For general measures, Theorem 13.2 has
been established in [Hyt13]. Already for weights, Theorem 13.2 is a difficult result, and we will
not say more about it here.

13.B. Bump theory. Another line of research is trying to find simple sufficient conditions for
(13.1) conditions, in the style of the classical A2 condition. Recall that

[w]A2 = sup
Q

1
|Q|

ˆ
Q

w · 1
|Q|

ˆ
Q

σ, σ =
1
w
.

Again, this naturally generalizes to the two-weight case, just by dropping the condition that
σ = 1/w:

[w, σ]A2 := sup
Q

1
|Q|

ˆ
Q

w · 1
|Q|

ˆ
Q

σ.

The proof that we gave for the necessity of [w]A2 <∞ for the L2(w) boundedness of the Hilbert
transform easily extends to show that [σ,w]A2 <∞ is a necessary condition for (13.1) with T = H,
in the case of arbitrary two weights. However, it is also known that this condition is not sufficient;
in the case of general measures, it is actually not necessary either, so it is completely unrelated to
(13.1) in the full generality. Nevertheless, the success of the A2 theory in the one-weight case has
encouraged attempts to find some similar theory even in the two-weight case. An early result in
this direction is the following:

Theorem 13.3 (Neugebauer). Suppose that two weights w, σ satisfy the “bumped up” A2 condition

A2 := sup
Q

( 1
|Q|

ˆ
Q

wr
)1/r( 1

|Q|

ˆ
Q

σr
)1/r

(13.4)

for some r > 1. Then (13.1) holds for all Calderón–Zygmund operators T .
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There is a lot of theory towards more general sufficient bump conditions in the style of (13.4).
We will prove Theorem 13.3 as a special case of an abstract formulation due to Lerner. This
requires some preparations.

First, it is convenient to reformulate (13.4) slightly: note that( 1
|Q|

ˆ
Q

wr
)1/r

=
( 1
|Q|

ˆ
Q

(w1/2)2r
)2/2r

= ‖w1/2‖2L2r(Q),

where we use the normalized norm

‖f‖Lq(Q) :=
( 1
|Q|

ˆ
Q

|f |q
)1/q

.

Now suppose that XQ is a Banach space of functions on Q, with a “dual” space X ′Q in the sense
that

1
|Q|

ˆ
Q

f · g ≤ ‖f‖XQ‖g‖X′Q .

In the above formalism, (Lq(Q))′ = Lq
′
(Q) for the usual dual exponent.

Related to the dual spaces, we consider the maximal function

MX′f(x) := sup
Q3x
‖f‖X′Q .

If X ′Q = Ls(Q), then

MLsf(x) = sup
Q3x

( 1
|Q|

ˆ
Q

|f |s
)1/s

= M(|f |s)(x)1/s,

where M is the usual maximal function. We observe that

‖MLsf‖Lp = ‖M(|f |s)‖1/s
Lp/s
≤ ‖M‖1/s

Lp/s→Lp/s‖|f |
s‖1/s
Lp/s
≤ ‖M‖1/s

Lp/s→Lp/s‖f‖Lp .

Since M is bounded on Lp if and only if p > 1, we see that MLs is bounded on Lp if and only if
p > s. Now we are ready to formulate:

Theorem 13.5 (Bump theorem of Lerner; conjectured by Cruz-Uribe). For each cube Q, let XQ,
YQ be Banach function spaces with duals X ′Q, Y

′
Q. Let w, σ be weights. Suppose that

A2 := sup
Q
‖w1/2‖2XQ‖σ

1/2‖2YQ <∞

and that MX′ and MY ′ are both bounded on (the unweighted) L2. Then (13.1) holds for all
Calderón–Zygmund operators, and more precisely

‖T (fσ)‖L2(w) ≤ cTA
1/2

2 ‖MX′‖L2→L2‖MY ′‖L2→L2‖f‖L2(σ). (13.6)

Let us first observe that this contains Neugebauer’s theorem. Indeed, in that case XQ = YQ =
L2r(Q), so that MX′ = MY ′ = ML(2r)′ . Since 2r > 2, we have (2r)′ < 2′ = 2, and hence ML(2r)′

is bounded on L2.

Proof of Theorem 13.5. By Lerner’s dyadic domination theorem, it is enough to prove (13.6) with
the averaging operators AS in place of T . By duality, we need to prove thatˆ

AS (fσ) · gw ≤ cA 1/2
2 ‖MX′‖L2→L2‖MY ′‖L2→L2‖f‖L2(σ)‖g‖L2(w). (13.7)

Let us do this.
Recalling that

AS f =
∑
S∈S

1S
|S|

ˆ
S

f,
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where the cubes S have pairwise disjoint subsets E(S) with |E(S)| ≥ 1
2 |S|, we computeˆ

AS (fσ) · gw =
∑
S∈S

1
|S|

ˆ
S

fσ ·
ˆ
S

gw =
∑
S∈S

1
|S|

ˆ
S

fσ1/2σ1/2 · 1
|S|

ˆ
S

gw1/2w1/2 · |S|

≤
∑
S∈S

‖fσ1/2‖Y ′S‖σ
1/2‖YS‖gw1/2‖X′S‖w

1/2‖XS · 2|E(S)|

≤ 2
(

sup
S∈S

‖σ1/2‖YS‖w1/2‖XS
) ∑
S∈S

‖fσ1/2‖Y ′S‖gw
1/2‖X′S · |E(S)|

≤ 2A
1/2

2

∑
S∈S

inf
y∈S

MY ′(fσ1/2)(y) inf
z∈S

MX′(gw1/2)(z)
ˆ
E(S)

dx

≤ 2A
1/2

2

∑
S∈S

ˆ
E(S)

MY ′(fσ1/2)(x)MX′(gw1/2)(x) dx

≤ 2A
1/2

2

ˆ
Rd
MY ′(fσ1/2)(x)MX′(gw1/2)(x) dx

≤ 2A
1/2

2 ‖MY ′(fσ1/2)‖L2‖MX′(gw1/2)‖L2

≤ 2A
1/2

2 ‖MY ′‖L2→L2‖fσ1/2‖L2‖MX′‖L2→L2‖gw1/2‖L2

= 2A
1/2

2 ‖MX′‖L2→L2‖MY ′‖L2→L2‖f‖L2(σ)‖g‖L2(w).

This proves (13.7), and therefore the theorem. �

13.C. Some open problems. After Lerner’s proof of the bump theorem above, the question
arose, whether its assumptions may be weakened as follows. Assume only the one-sided bump
condition

sup
Q
‖w1/2‖2XQ〈σ〉Q + sup

Q
〈w〉Q‖σ1/2‖2YQ <∞,

as well as MX′ and MY ′ bounded on L2 as before. Is this enough to guarantee (13.1)? There are
some partial positive results for particular forms of the bump spaces XQ, YQ, but the problem is
open in the stated generality.

There is also the following quantitative variant: Under the same assumptions as in Lerner’s
bump theorem, is it true that

‖T (fσ)‖L2(w) ≤ cTA
1/2

2 (‖MX′‖L2→L2 + ‖MY ′‖L2→L2)‖f‖L2(σ)? (13.8)

The difference is that we have replaced the product of the maximal norms by their sum.
If true, even just for the classical bump (13.4), the estimate (13.8) would imply the A2 theorem

when specialized to σ = 1/w. Namely, in the one-weight case there is a powerful reverse Hölder
inequality which provides a certain self-improvement of the A2 condition: the classical A2 condition
already implies the stronger version (13.4), even with comparable constant A2 ≤ 2[w]A2 , provided
that r = 1 + ε with ε ≤ cd/[w]A2 for some small dimensional constant cd. In this case, one can
check that ‖ML(2r)′‖L2→L2 is of the order ε−1/2 h [w]1/2A2

. Thus, the Bump Theorem 13.5, when
specialized to the one-weight case, would only give

‖Tf‖L2(w) ≤ cT [w]3/2A2
‖f‖L2(w),

whereas (13.8) would recover the sharp form of the A2 theorem. At the present, the two-weight
bump theory is not strong enough to recover the sharp results in the one-weight theory.
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