Differential Equations II
Exercise 6
24.4. 2014 (16-18 o'clock in CK111)

1. Show that the matrix

$$
X(t)=\left(\begin{array}{cc}
1 & e^{2 t} \\
-1 & e^{2 t}
\end{array}\right) \in \mathbf{R}^{2 \times 2}
$$

is invertible for all $t \in \mathbf{R}$, and compute the inverse matrix $X(t)^{-1}$.
2. Solve the system of differential equations

$$
\bar{x}^{\prime}(t)=A \bar{x}(t), \quad t \in \mathbf{R}, \quad \text { where } A=\left(\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right)
$$

Note: the matrix A has a double eigenvalue $r=3$. Determine a second solution $\bar{x}^{2}(t)=e^{3 t}(\bar{v}+t(A-3 I) \bar{v})$ corresponding to the eigenvalue $r=3$ for the fundamental system of solutions, where $\bar{v} \in \mathbf{R}^{2}, \bar{v} \neq \overline{0}$, satisfies $(A-3 I)^{2} \bar{v}=\overline{0}$.
3. Solve the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)-x_{2}(t) \\
& x_{2}^{\prime}(t)=5 y_{1}(t)-3 x_{2}(t)
\end{aligned}
$$

with the help of the elimination method.
4. Solve the non-homogeneous system of differential equations

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right) \bar{x}(t)+\binom{e^{-t}}{-e^{-t}}
$$

using the elimination method.
5. Solve the linear non-homogeneous system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)+e^{-t} \\
& x_{2}^{\prime}(t)=x_{1}(t)+x_{2}(t)+e^{t}
\end{aligned}
$$

with the help of the formula for the variation of parameters. Hint: the corresponding homogeneous system of differential equations was solved in exercise 5:1 and the inverse $X(t)^{-1}$ of a fundamental matrix $X(t)$ is computed in exercise 6:1.
6. Solve the linear non-homogeneous system of differential equations

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+\sin t \\
x_{2}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+\cos t
\end{aligned}
$$

with the ansatz $t \mapsto(\sin t) \bar{a}+(\cos t) \bar{b}$, where $\bar{a}, \bar{b} \in \mathbf{R}^{2}$ are unknown vectors.
Course exam: Monday 28.4 at 13-15 o'clock in Exactum (simultaneously the course exam for the course Geometria). Recall: you are allowed to bring a one-sided memory helper of size $A 4$ to the course exam.
Topics of the exam: non-linear DEs of second order*, linear DEs of higher order with constant coefficients*, the local existence and uniqueness theorem for first order DEs, linear DE-systems of the first order, solving linear DEsystems of the first order with constant coefficients. Note: see also the course notes DE 2011 in C326 for topics marked *

