Differential Equations II Exercise 6 24.4. 2014 (16-18 o'clock in CK111)

1. Show that the matrix

$$X(t) = \begin{pmatrix} 1 & e^{2t} \\ -1 & e^{2t} \end{pmatrix} \in \mathbf{R}^{2 \times 2}$$

is invertible for all $t \in \mathbf{R}$, and compute the inverse matrix $X(t)^{-1}$.

2. Solve the system of differential equations

$$\overline{x}'(t) = A\overline{x}(t), \quad t \in \mathbf{R}, \quad \text{where } A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}.$$

Note: the matrix A has a double eigenvalue r = 3. Determine a second solution $\overline{x}^2(t) = e^{3t}(\overline{v} + t(A - 3I)\overline{v})$ corresponding to the eigenvalue r = 3 for the fundamental system of solutions, where $\overline{v} \in \mathbf{R}^2$, $\overline{v} \neq \overline{0}$, satisfies $(A - 3I)^2 \overline{v} = \overline{0}$.

3. Solve the system of differential equations

$$x'_{1}(t) = x_{1}(t) - x_{2}(t)$$
$$x'_{2}(t) = 5y_{1}(t) - 3x_{2}(t)$$

with the help of the elimination method.

4. Solve the non-homogeneous system of differential equations

$$\overline{x}'(t) = \begin{pmatrix} 0 & 2\\ -1 & 3 \end{pmatrix} \overline{x}(t) + \begin{pmatrix} e^{-t}\\ -e^{-t} \end{pmatrix}$$

using the elimination method.

5. Solve the linear non-homogeneous system of differential equations

$$x'_{1}(t) = x_{1}(t) + x_{2}(t) + e^{-t}$$
$$x'_{2}(t) = x_{1}(t) + x_{2}(t) + e^{t}$$

with the help of the formula for the variation of parameters. *Hint:* the corresponding homogeneous system of differential equations was solved in exercise 5:1 and the inverse $X(t)^{-1}$ of a fundamental matrix X(t) is computed in exercise 6:1.

6. Solve the linear non-homogeneous system of differential equations

$$x'_{1}(t) = x_{1}(t) + x_{2}(t) + \sin t$$

$$x'_{2}(t) = x_{1}(t) + x_{2}(t) + \cos t$$

with the ansatz $t \mapsto (\sin t)\overline{a} + (\cos t)\overline{b}$, where $\overline{a}, \overline{b} \in \mathbf{R}^2$ are unknown vectors.

Course exam: Monday 28.4. at 13-15 o'clock in Exactum (simultaneously the course exam for the course *Geometria*). *Recall: you are allowed to bring a one-sided memory helper of size A4 to the course exam.*

Topics of the exam: non-linear DEs of second order^{*}, linear DEs of higher order with constant coefficients^{*}, the local existence and uniqueness theorem for first order DEs, linear DE-systems of the first order, solving linear DE-systems of the first order with constant coefficients. *Note: see also the course notes DE 2011 in C326 for topics marked* *