Differential Equations II

Exercise 5
10.4. 2014 (16-18 o'clock in CK111)

1. Solve the linear homogeneous system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t)+x_{2}(t) .
\end{aligned}
$$

2. Determine a fundamental system of solutions of the homogeneous system

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right) \bar{x}(t)
$$

Note: $\lambda=-1$ is a root of the characteristic polynomial.
3. Find all solutions of the homogeneous DE-system

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right) \bar{x}(t)
$$

Hint: the characteristic polynomial is $p(\lambda)=-(\lambda-5)(\lambda-2)^{2}$.
4. Find all solutions of the system

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t)+x_{2}(t) \\
& x_{2}^{\prime}(t)=-x_{1}(t)+2 x_{2}(t) .
\end{aligned}
$$

5. Solve the initial value problem

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right) \bar{x}(t), \quad \bar{x}(0)=(1,1,1)^{T} .
$$

6. Solve the non-linear system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t) x_{2}(t)-x_{2}(t)
\end{aligned}
$$

by first solving $x_{1}^{\prime}(t)=x_{1}(t)$.
Course exam: Monday 28.4 at 13-15 o'clock (simultaneously the exam for the course Geometria). An alternative course exam will be arranged if needed. Overview of the course during the final lecture on Wednesday 16.4. Last exercises (Exercise 6) on Thursday 24.4.

