Differential Equations II

Exercise 4
3.4. 2014 (16-18 o'clock in CK111)

1. Compute the derivative $\bar{x}^{\prime}(t)$, when the functions $\bar{x}(t)$ are defined by

$$
\text { (i) } \bar{x}(t)=\left(e^{-2 t}, t e^{t}\right)^{T}, \quad \text { (ii) } \bar{x}(t)=\left(1, e^{t} \cos t, e^{t} \sin t\right)^{T} .
$$

2. Verify that $\left(\bar{x}^{1}(t), \bar{x}^{2}(t)\right)$, where $\bar{x}^{1}(t)=e^{7 t}(2,1)^{T}$ and $\bar{x}^{2}(t)=e^{-5 t}(-2,1)^{T}$, forms a fundamental system of solutions of the homogeneous system

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{cc}
1 & 12 \\
3 & 1
\end{array}\right) \bar{x}(t) .
$$

3. Verify that $\left(\bar{x}^{1}(t), \bar{x}^{2}(t), \bar{x}^{3}(t)\right)$ forms a fundamental system of solutions of

$$
\bar{x}^{\prime}(t)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 2 & 1 \\
-2 & 1 & -1
\end{array}\right) \bar{x}(t)
$$

where $\bar{x}^{1}(t)=e^{t}(1,0,-1)^{T}, \bar{x}^{2}(t)=e^{2 t}(1,-1,-1)^{T}$ and $\bar{x}^{3}(t)=e^{-t}(1,2,-7)^{T}$. 4. Let $\bar{u}=\left(u_{1}, \ldots, u_{n}\right)^{T} \in \mathbf{R}^{n}$ be a given non-zero vector. Determine if the vector functions

$$
\text { (i) } \bar{x}(t)=t \bar{u}, t \in \mathbf{R}, \quad \text { (ii) } \bar{x}(t)=\log (t) \bar{u}, t \in(0, \infty),
$$

can be a solution of a system $\bar{x}^{\prime}(t)=A \bar{x}(t)$ of differential equations for some $n \times n$-matrix $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ having constant coefficients.
5. Let $\alpha>0, \beta>0$ be constants. The system

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\alpha x_{2}(t) \\
x_{2}^{\prime}(t) & =-\beta x_{1}(t)
\end{aligned}
$$

describes the amount of bacteria $x_{1}(t)$ and $x_{2}(t)$ at time $t \geq 0$ in a population where the species of bacteria consume each other without any regeneration. Compute $\frac{x_{1}(0)}{x_{2}(0)}$ when it is known that $x_{1}(t)>0$ and $x_{2}(t)>0$ for all $t \geq 0$.
6 . Let $\bar{x}(t)$ be a solution of the homogeneous linear system

$$
\bar{x}^{\prime}(t)=A(t) \bar{x}(t)
$$

in the open interval $I \subset \mathbf{R}$, where $A(t)=\left(a_{i j}(t)\right) \in \mathbf{R}^{n \times n}$. Show: if $\bar{x}\left(t_{0}\right) \neq \overline{0}$ for some $t_{0} \in I$, then $\bar{x}(t) \neq \overline{0}$ for all $t \in I$. Suggestion: use the uniqueness theorem for linear systems.

