Differential Equations II

Exercise 3
27.3. 2014 (16-18 o'clock room CK111)

1. Consider the Picard iterations in the proof of the local existence theorem,

$$
y_{0}(x)=y_{0}, \quad y_{k+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{k}(t)\right) d t, \quad k \in \mathbb{N},
$$

applied to the initial value problem

$$
y^{\prime}=y+2, \quad y(0)=1 .
$$

Compute the functions y_{1}, y_{2} and y_{3}.
2. Reduce the linear differential equation

$$
y^{(4)}-8 y^{\prime \prime}+16 y=\sin x
$$

to a 1 . order system in matrix form having 4 unknown functions.
3. Rewrite the system of differential equations

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)-2 y(t)+z(t)+e^{t} \\
y^{\prime}(t) & =-2 x(t)+y(t)-z(t) \\
z^{\prime}(t) & =y(t)+2 z(t)-e^{-t}
\end{aligned}
$$

in matrix form.
4. The point $\left(x_{0}, y_{0}\right)$ is an equilibrium solution of the system

$$
\begin{aligned}
x^{\prime}(t) & =f_{1}(x(t), y(t)) \\
y^{\prime}(t) & =f_{2}(x(t), y(t))
\end{aligned}
$$

if the constant functions $x(t)=x_{0}, y(t)=y_{0}$ are solutions, that is, if $f_{1}\left(x_{0}, y_{0}\right)=0=f_{2}\left(x_{0}, y_{0}\right)$. Show that $(0,0)$ is the only equilibrium solution of the linear system

$$
\begin{aligned}
x^{\prime}(t) & =a x(t)+b y(t) \\
y^{\prime}(t) & =c x(t)+d y(t)
\end{aligned}
$$

if $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c \neq 0$.
5. Verify that $x(t)=e^{-t} \cos t, y(t)=e^{-t} \sin t$, where $t \in \mathbf{R}$, solve the system

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)-y(t) \\
y^{\prime}(t) & =x(t)-y(t) .
\end{aligned}
$$

What happens to $(x(t), y(t))$ as $t \rightarrow \infty$?
6. Solve the linear system of differential equations

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =x(t)-y(t)
\end{aligned}
$$

by the elimination method (compare Example 5.2, pages 59-60, in the Differential Equations lecture notes). That is, differentiate the 1. equation, substitute y^{\prime} from the second one and y from the first one to eliminate y.

