Dependence logic Problems 5 Tuesday 29.4.2014

1. Every sentence $\phi \in \mathcal{D}$ is logically equivalent to a sentence $\psi \in \mathcal{D}$ of the form

$$\forall x_1 \dots \forall x_n \exists x_1 \dots \exists x_m (\theta_1 \wedge \theta_2), \tag{1}$$

where θ_1 is a conjunction of dependence atoms and θ_2 is a quantifier-free first-order formula. Is the following generalization of this result possible: Every sentence $\phi \in \mathcal{D}$ is strongly logically equivalent to a sentence as in (1)?

- **2.** Let ϕ be a sentence of dependence logic that is in negation normal-form and does not contain any universal quantifiers. Show that there is a first-order sentence ϕ^* which is logically equivalent to ϕ . (Hint: Use induction on ϕ . Note also that over teams $X = \{s\}$ with just one assignment dependence atoms can be replaced with \top .)
- **3.** Show that

$$=(x_1,...,x_n) \equiv x_n \perp_{x_1,...,x_{n-1}} x_n.$$

- **4.** Show that every formula of inclusion logic and independence logic can be translated to Σ^1_1 by extending the translation $\phi \mapsto \tau_{1,\phi}$ between dependence logic and Σ^1_1 by clauses corresponding to independence atoms and inclusion atoms. (see Theorem 6.2 of the course textbook on page 88.)
- **5.** The connective called intuitionistic implication $\phi \rightarrow \psi$ is defined by

$$\mathcal{M} \models_X \phi \twoheadrightarrow \psi$$
 iff (for all $Y \subseteq X$: if $\mathcal{M} \models_Y \phi$ then $\mathcal{M} \models_Y \psi$).

Let $\mathcal{D}(\twoheadrightarrow)$ be the extension of dependence logic in which \twoheadrightarrow is introduced as a new connective but negation is only allowed in front of atomic formulas (\land and \forall are also available). Show that dependence atoms $=(t_1, ..., t_k)$ can be expressed in $\mathcal{D}(\twoheadrightarrow)$ using only dependence atoms of the form $=(t_i)$.

6. Let ϕ be a sentence of $\mathcal{D}(\twoheadrightarrow)$. Construct a sentence $\psi \in \mathcal{D}(\twoheadrightarrow)$ such that for all \mathcal{M} :

$$\mathcal{M} \models \psi \Leftrightarrow \mathcal{M} \not\models \phi.$$

This shows that, for sentences, $\mathcal{D}(\rightarrow)$ is closed under classical negation.