Dependence logic Problems 3 Tuesday 8.4.2014

1. Let $\phi(x_1, \ldots, x_n)$ and $\psi(x_1, \ldots, x_n)$ be formulas of dependence logic, with x_1, \ldots, x_n appearing free, such that $\phi(x_1, \ldots, x_n) \equiv^* \psi(x_1, \ldots, x_n)$. For terms t_1, \ldots, t_n let $\phi(t_1, \ldots, t_n)$ be the formula in which x_i is substituted by t_i for $1 \leq i \leq n$. The substitution is allowed only if no variable of t_i becomes bound in $\phi(t_1, \ldots, t_n)$. Show that for any terms t_1, \ldots, t_n satisfying this condition for both ϕ and ψ ,

$$\phi(t_1,\ldots,t_n) \equiv^* \psi(t_1,\ldots,t_n).$$

- **2.** Show the following implication for all sentences ϕ , and models \mathcal{M} and \mathcal{M}' : if $\mathcal{M} \cong \mathcal{M}'$, then $\mathcal{M} \models \phi \Leftrightarrow \mathcal{M}' \models \phi$. Prove the claim using induction on ϕ for all formulas. Consider the cases where $\phi = \psi_1 \vee \psi_2$ or $\phi = \exists x_n \psi$.
- **3.** Find a logically equivalent first-order formula in each case (below f and P are symbols of the vocabulary):
 - 1. $\exists x_0 (=(x_1, x_0) \land (f(x_1) = x_1))$
 - 2. $\exists x_0 (=(x_2, x_0) \land (P(f(x_0)) \land \neg P(x_1)))$
- **4.** Which of the following formulas are logically equivalent to a first-order formula:
 - 1. $=(x_0, x_1, x_2) \land x_0 = x_1$
 - 2. $(=(x_0, x_2) \land x_0 = x_1) \rightarrow =(x_1, x_2)$
 - 3. $\forall x_0 \exists x_2 (=(x_0, x_2) \land x_2 = x_1)$
- **5.** Let $L = \emptyset$ and $M = \{0, 1\}$. Can you find a first-order formula ψ such that for all teams X of M with domain $\{x_0, x_1, x_2\}$: $M \models_X \psi \Leftrightarrow M \models_X \phi$, when
 - $\phi := \exists x_0 (=(x_2, x_0) \land \neg (x_0 = x_1)), \text{ or }$
 - $\phi := \exists x_0 (=(x_2, x_0) \land (x_0 = x_1 \lor x_0 = x_2)).$
- **6.** Let ϕ be the formula $\exists x_0 \forall x_1 \neg (=(x_2, x_1) \land (x_0 = x_1))$. Show that the flattening of ϕ is not a strong logical consequence of ϕ .