Contents

Data-analyysi R-ohjelmistolla

Tommi Härkänen

Terveyden ja hyvinvoinnin laitos (THL), Helsinki E-mail: tommi.harkanen@helsinki.fi

Helsingin yliopisto, 2.4.2014

Linear models

Data-analyysi R-ohjelmistolla

Association of continuous variables

Example: The iris data

Data-analyysi R-ohjelmistolla Linear models

Regression modeling

What is the average value of the outcome variable?

A researcher wants to know, what is the association of two (or more) continuous variables.

Simple questions:

- If the researcher measures e.g. sepal length, then what is the average petal length?
- How much does the petal length change on average, if the measured sepal length increases by 1 cm (unit of measurement)?

More complicated questions:

- > Are the associations listed above different for different species?
- How well does the model predict petal length given sepal length (and possibly other variables)?

Regression modeling

Linear model for one explanatory variable (a.k.a **covariate** or independent variable) x_i for individual i = 1, 2, ..., n is often defined as

$$Y_{i} = \overbrace{\beta_{0} + \beta_{1} x_{i}}^{\text{expectation}} + \epsilon_{i}.$$
 (1)

The outcome variable is Y_i

Regression coefficients are β_0 and β_1 :

The intercept term β_0 controls the average level of the outcome values at $x_i = 0$. The expected value of the outcome is $\mathbb{E}[Y_i | x_i = 0] = \beta_0$. The slope term β_1 controls the **association** of the outcome and the covariate. Note that if x_i increases by 1 unit, then the outcome value increases by β_1 on average.

Error term is ϵ_i , which is often assumed to be a normally distributed random variable with mean 0 and variance σ^2 .

Data-analyysi R-ohjelmistolla Linear models

Linear regression modeling in R

The basic command is lm: lm(formula, data, subset, ...) Some of the most important options are formula The model description as a formula: outcome ~ terms where terms are the covariates separated by '+' and their interactions defined using '*' or ':'. data Optional data frame, list or environment name. subset Optional vector specifying a subset of observations. Example: lm(Petal.Length ~ Sepal.Length, data = iris, subset = Species ==

lm(Petal.Length ~ Sepal.Length, data = iris, subset = Species "setosa")

##

```
## Call:
## Call:
## Im(formula = Petal.Length ~ Sepal.Length, data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) Sepal.Length
## 0.803 0.132
```

Regression modeling

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i = 2 + (-1) \times x_i + \epsilon_i \text{ and } \epsilon_i \sim N(0, \sigma^2) \text{ where } \sigma^2 = 1.$$

Data-analyysi R-ohjelmistolla

Observed vs. predicted values

Sepal.Length

Observed vs. predicted values

Separate analyses for each species

