Contents

Data-analyysi R-ohjelmistolla

Tommi Härkänen

Terveyden ja hyvinvoinnin laitos (THL), Helsinki E-mail: tommi.harkanen@helsinki.fi

Helsingin yliopisto, 2.4.2014

$\stackrel{\text { Data-analyssi } \mathrm{R} \text {-ohjelmistolla }}{\text { L }}$
 Linear models

Association of continuous variables

Example: The iris data

Linear models

$\xrightarrow{\text { Data-analysi } R \text {-ohjelmistolla }}$
 -Linear mode

Regression modeling

What is the average value of the outcome variable?
A researcher wants to know, what is the association of two (or more) continuous variables.
Simple questions:

- If the researcher measures e.g. sepal length, then what is the average petal length?
- How much does the petal length change on average, if the measured sepal length increases by 1 cm (unit of measurement)?
More complicated questions:
- Are the associations listed above different for different species?
- How well does the model predict petal length given sepal length (and possibly other variables)?

Regression modeling

Linear model for one explanatory variable (a.k.a covariate or independent variable) x_{i} for individual $i=1,2, \ldots, n$ is often defined as

$$
\begin{equation*}
Y_{i}=\overbrace{\beta_{0}+\beta_{1} x_{i}}^{\text {expectation }}+\epsilon_{i} . \tag{1}
\end{equation*}
$$

The outcome variable is Y_{i}
Regression coefficients are β_{0} and β_{1} :
The intercept term β_{0} controls the average level of the outcome values at $x_{i}=0$. The expected value of the outcome is $\mathbb{E}\left[Y_{i} \mid x_{i}=0\right]=\beta_{0}$
The slope term β_{1} controls the association of the outcome and the covariate. Note that if x_{i} increases by 1 unit, then the outcome value increases by β_{1} on average.
Error term is ϵ_{i}, which is often assumed to be a normally distributed random variable with mean 0 and variance σ^{2}.

$\stackrel{\text { Data-analyssi } \mathrm{R} \text {-ohjelmistolla }}{\text { Linear models }}$
 Linear models

Linear regression modeling in R

The basic command is 1 m :
lm(formula, data, subset, ...)
Some of the most important options are
formula The model description as a formula: outcome \sim terms where terms are the covariates separated by ' + ' and their interactions defined using '*' or ' \because '.
data Optional data frame, list or environment name. subset Optional vector specifying a subset of observations.

Example:

lm(Petal.Length ~ Sepal.Length, data $=$ iris, subset $=$ Species == "setosa")
\#\#
\#\# Call:
\#\# lm(formula $=$ Petal.Length ~ Sepal.Length, data $=$ iris, subset $=$ Species ==
\#\# "setosa")
\#\#
\#\# Coefficients:
\#\# (Intercept) Sepal.Length
\#\# 0.803
0.132

Regression modeling

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}=2+(-1) \times x_{i}+\epsilon_{i} \text { and } \epsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \text { where } \sigma^{2}=1 \text {. }
$$

[^0]
Observed vs. predicted values

Observed vs. predicted values
Separate analyses for each species

[^0]: Data-analyssi R-ohjelmistolla
 Linear models
 $\left\llcorner_{\text {Linear models }}\right.$

