Exercise Set 3

If you need credit for the course, please turn in half of the following exercises (of a choice of your own).

1. Give an example of a linear algebraic group which consists of semisimple elements but is not diagonalizable.
2. Let $\phi: G \rightarrow H$ be a homomorphism of diagonalizable groups. Denote by ϕ^{*} the induced homomorphism $X^{*}(H) \rightarrow X^{*}(G)$. Show that if ϕ is injective (resp. surjective) then ϕ^{*} is surjective (resp. injective).
3. The group of automorphisms of an n-dimensional torus is isomorphic to the group $G L_{n}(\mathbb{Z})$ of integral $n \times n$-matrices with an integral inverse.
4. Using $T_{x} X \cong\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$, describe $T_{x} X$ in the following cases
(a) X is a point,
(b) $X=\mathbf{A}^{n}$,
(c) $X=\left\{(a, b) \in \mathbf{A}^{2} \mid a b=0\right\}, x=(0,0)$,
(d) $($ char $\mathbf{k} \neq 2,3) X=\left\{(a, b) \in \mathbf{A}^{2} \mid a^{2}=b^{3}\right\}, x=(0,0)$.
5. Let X and Y be algebraic varieties, $x \in X, y \in Y$. Show that $T_{x, y}(X \times Y) \simeq T_{x} X \oplus T_{y} Y$.
6. If X is a closed subvariety of Y and $\phi: X \rightarrow Y$ is the injection morphism, then $d \phi_{x}$ is injective for all $x \in X$.
7. (a) If $A=R\left[T_{1}, \ldots, T_{m}\right]$, then $\Omega_{A / R}$ is a free A-module with basis $\left(d T_{i}\right)_{1 \leq i \leq m}$.
(b) Let A be an R-algebra which is an integral domain and let F be the quotient filed of A. Then $\Omega_{F / R} \cong F \otimes_{A} \Omega_{A / R}$.
(c) Let F be a field and $E=F\left(x_{1}, \ldots, x_{m}\right)$ be an extension field of finite type. Then $\Omega_{E / F}$ is a finite dimensional vector space over E spanned by $d x_{i}$.
(d) Let $A=\mathbf{k}[T, U] /\left(T^{2}-U^{3}\right)$. Show that $\Omega_{A / \mathbf{k}}$ is not a free A-module.
(e) Let A and B be R-algebras. There is an isomorphism of $A \otimes_{R} B$-modules

$$
\Omega_{A \otimes_{R} B / R} \simeq\left(\Omega_{A / R} \otimes_{R} B\right) \oplus\left(A \otimes_{R} \Omega_{B / R}\right)
$$

under which $d_{A \otimes_{R} B / R}$ corresponds to $\left(d_{A / R} \otimes_{R} \operatorname{id}_{B}\right) \oplus\left(\operatorname{id}_{A} \otimes_{R} d_{B / R}\right)$.
8. (a) Let H be a closed subgroup of a linear algebraic group G and let $J \subset \mathbf{k}[G]$ be the ideal of functions vanishing on H so that $\mathbf{k}[H]=\mathbf{k}[G] / J$. Using the fact that Lie $H=\operatorname{Lie} G \cap\{D \in$ $\left.\mathcal{D}_{G} \mid D J \subset J\right\}$ to show that the Lie algebra of $S L_{n}$ is the subalgebra $\mathfrak{s l}_{n}$ of $\mathfrak{g l}_{n}$ of traceless matrices.
(b) Determine the Lie algebras of \mathbf{D}_{n} (diagonal), \mathbf{T}_{n} (upper triangular), \mathbf{U}_{n} (unipotent upper triangular).
(c) Let T be a torus. There is a canonical isomorphism Lie $T \rightarrow \mathbf{k} \otimes_{\mathbb{Z}} X_{*}(T)$.
(d) $\operatorname{Lie} G=\operatorname{Lie} G^{0}$.
9. The differential of the adjoint representation Ad is given by

$$
\left.d \operatorname{Ad}(X)(Y)=[X, Y] . \quad \text { (Hint: first prove for } G L_{n} .\right)
$$

