Exercise Set 3

If you need credit for the course, please turn in half of the following exercises (of a choice of your own).

1. Give an example of a linear algebraic group which consists of semisimple elements but is not diagonalizable.

2. Let $\phi: G \to H$ be a homomorphism of *diagonalizable* groups. Denote by ϕ^* the induced homomorphism $X^*(H) \to X^*(G)$. Show that if ϕ is injective (resp. surjective) then ϕ^* is surjective (resp. injective).

3. The group of automorphisms of an *n*-dimensional torus is isomorphic to the group $GL_n(\mathbb{Z})$ of integral $n \times n$ -matrices with an integral inverse.

- 4. Using $T_x X \cong (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$, describe $T_x X$ in the following cases
 - (a) X is a point,
 - (b) $X = \mathbf{A}^n$,
 - (c) $X = \{(a, b) \in \mathbf{A}^2 \mid ab = 0\}, x = (0, 0),$
 - (d) (char $\mathbf{k} \neq 2, 3$) $X = \{(a, b) \in \mathbf{A}^2 | a^2 = b^3\}, x = (0, 0).$

5. Let X and Y be algebraic varieties, $x \in X, y \in Y$. Show that $T_{x,y}(X \times Y) \simeq T_x X \oplus T_y Y$.

6. If X is a closed subvariety of Y and $\phi: X \to Y$ is the injection morphism, then $d\phi_x$ is injective for all $x \in X$.

- 7. (a) If $A = R[T_1, \ldots, T_m]$, then $\Omega_{A/R}$ is a free A-module with basis $(dT_i)_{1 \le i \le m}$.
 - (b) Let A be an R-algebra which is an integral domain and let F be the quotient filed of A. Then $\Omega_{F/R} \cong F \otimes_A \Omega_{A/R}$.
 - (c) Let F be a field and $E = F(x_1, \ldots, x_m)$ be an extension field of finite type. Then $\Omega_{E/F}$ is a finite dimensional vector space over E spanned by dx_i .
 - (d) Let $A = \mathbf{k}[T, U]/(T^2 U^3)$. Show that $\Omega_{A/\mathbf{k}}$ is not a free A-module.
 - (e) Let A and B be R-algebras. There is an isomorphism of $A \otimes_R B$ -modules

$$\Omega_{A\otimes_B B/R} \simeq (\Omega_{A/R} \otimes_R B) \oplus (A \otimes_R \Omega_{B/R})$$

 $\mathfrak{U}_{A\otimes_R B/R} \cong (\mathfrak{U}_{A/R} \otimes_R D) \oplus (A \otimes_R \mathfrak{U}_{B/R})$ under which $d_{A\otimes_R B/R}$ corresponds to $(d_{A/R} \otimes_R \mathrm{id}_B) \oplus (\mathrm{id}_A \otimes_R d_{B/R}).$

- 8. (a) Let H be a closed subgroup of a linear algebraic group G and let $J \subset \mathbf{k}[G]$ be the ideal of functions vanishing on H so that $\mathbf{k}[H] = \mathbf{k}[G]/J$. Using the fact that Lie $H = \text{Lie } G \cap \{D \in \mathcal{A}\}$ $\mathcal{D}_G | DJ \subset J \}$ to show that the Lie algebra of SL_n is the subalgebra \mathfrak{sl}_n of \mathfrak{gl}_n of traceless matrices.
 - (b) Determine the Lie algebras of \mathbf{D}_n (diagonal), \mathbf{T}_n (upper triangular), \mathbf{U}_n (unipotent upper triangular).
 - (c) Let T be a torus. There is a canonical isomorphism $\operatorname{Lie} T \to \mathbf{k} \otimes_{\mathbb{Z}} X_*(T)$.
 - (d) Lie $G = \text{Lie } G^0$.
- 9. The differential of the adjoint representation Ad is given by

dAd(X)(Y) = [X, Y]. (Hint: first prove for GL_n .)