Exercise Set 1

If you need credit for the course, please turn in half of the following exercises (of a choice of your own).

1. (a) Describe the Zariski topology on the affine line \mathbf{A}^{1}.
(b) The Euclidean topology on \mathbb{C}^{n} is finer than the Zariski topology.
(c) If we identify \mathbf{A}^{2} with $\mathbf{A}^{1} \times \mathbf{A}^{1}$ in the natural way, show that the Zariski topology on \mathbf{A}^{2} is not the product topology of the Zariski topologies on the two copies of \mathbf{A}^{1}. Which one is finer?
2. (a) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is not an integral domain.
(b) Let A and B be k-algebras of finite type. If A and B are reduced (resp. integral domains), then the same holds for $A \otimes_{\mathbf{k}} B$. Show that the assumption that A and B are of finite type can be omitted.
3. Let $\phi:(X, A) \rightarrow(Y, B)$ be a morphism of affine varieties and let $\phi^{*}: B \rightarrow A$ be the associated comorphism. Prove the following.
(a) If ϕ^{*} is surjective, then ϕ maps X onto a closed subset of Y;
(b) ϕ^{*} is injective if and only if ϕX is dense in Y.
4. Let (X, A) be an affine variety and $Y \subset X$. Show that $\left(Y,\left.A\right|_{Y}\right)$ is a subvariety of (X, A) if and only if Y is closed in X.
5. (a) Let Y be the plane curve $y=x^{2}$. Show that $\mathbf{k}[Y]$ is isomorphic to a polynomial ring in one variable.
(b) Let Z be the plane curve $x y=1$. Show that $\mathbf{k}[Z]$ is not isomorphic to a polynomial ring in one variable.
6. Show that a morphism of affine varieties $\phi: X \rightarrow Y$ is continuous for the Zariski topology.
7. A morphism whose underlying map on the topological spaces is a homeomorphism need not be an isomorphism.
(a) Let $\phi: \mathbf{A}^{1} \rightarrow \mathbf{A}^{2}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that the map ϕ defines a bijective bicontinuous morphism of \mathbf{A}^{1} onto the curve $y^{2}=x^{3}$, but that ϕ is not an isomorphism.
(b) Let the characteristic of the base field \mathbf{k} be $p>0$, and define a map $\phi: \mathbf{A}^{1} \rightarrow \mathbf{A}^{1}$ by $t \mapsto t^{p}$. Show that ϕ is bijective and bicontinuous but not an isomorphism. This is called the Frobenius morphism.
8. Let Y be the algebraic set in \mathbf{A}^{3} defined by the two polynomials $x^{2}-y z$ and $x z-x$. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.
