
Statistical genetics:
statistical concepts in a nutshell



Content

1. Motivation

2. Approaches to statistics

3. Hypothesis testing

4. Model comparison

5. SNP association studies

07.11.2012 Statistical genetics: statistical concepts in a nutshell 32 / 55



Model comparison

Likelihood ratio test

! The null hypothesis H0 states that model M0 fits the observed
data y as well as M1 does, while the alternative hypothesis H1

states the opposite

! The test statistic is defined as

t(y) = −2 log

{

p(y | θ̂0,M0)

p(y | θ̂1,M1)

}

,

where M0 and M1 are respectively the simpler (null) and more
complex (alternative) model and θ̂0 and θ̂1 the corresponding
maximum likelihood estimates
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Model comparison

Likelihood ratio test

! The distribution of the test statistic

t(y) = −2 log

{

p(y | θ̂0,M0)

p(y | θ̂1,M1)

}

,

under the assumption that H0 is true, converges against a
χ2(ν) distribution as n approaches ∞ with ν being the
difference in the number of parameters between M1 and M0

! The observed value t(y) of the test statistic is calculated and
the hypothesis H0 that model M0 fits the data as well as M1

does is rejected if t(y) > c
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Model comparison

χ2 approximation to the likelihood ratio for a simple H0

! H0 : θ = θ0 and H1 : θ ̸= θ0
! Expand the log-likelihood ℓ(θ0 |y) = p(y | θ0) as a second-order
Taylor series around the maximum likelihood estimate θ̂

ℓ(θ0 |y) ≈ ℓ(θ̂ |y) + ℓ′(θ̂ |y)(θ0 − θ̂) + ℓ′′(θ̂ |y)(θ0 − θ̂)2/2

! Plug the expansion into t(y) = −2ℓ(θ0 |y) + 2ℓ(θ̂ |y)

t(y) ≈ −2ℓ(θ̂ |y)− ℓ′′(θ̂ |y)(θ0 − θ̂)2 + 2ℓ(θ̂ |y)
= −ℓ′′(θ̂ |y)(θ0 − θ̂)2

! By the LLN and since θ̂ is a consistent estimator

−
1

n
ℓ′′(θ̂ |y) P→ −E[ℓ′′(θ0 |y)] = I(θ0)
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Model comparison

χ2 approximation to the likelihood ratio for a simple H0 cont’d

! The maximum likelihood estimator θ̂ is asymptotically normal:
√

nI(θ0)(θ̂ − θ0)
D→ Normal(0, 1)

! The distribution of the test statistic t(y) converges against a
χ2(1) distribution as n approaches ∞

nI(θ0)(θ̂ − θ0)
2 D→ χ2(1)

because the square of a standard normal random variable is χ2

distributed with 1 degree of freedom
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Model comparison

Bayesian information criterion (BIC)

! Approximate the prior predictive distribution under Mi with
Laplace’s method

p(y |Mi) ≈ (2π)d/2det(Q)−1/2p(y | θ̂,Mi)p(θ̂ |Mi) ,

where θ̂ is the maximum likelihood estimate and Q the negative
Hessian of the log-likelihood evaluated at θ̂

! The BIC is derived by writing

−2 log p(y |Mi) ≈ −d log(2π) + log det(Q)− 2 log p(θ̂ |Mi)

− 2 log p(y | θ̂,Mi)

! By the LLN and since θ̂ is a consistent estimator

Q = −
n

n
ℓ′′(θ̂ |y) P→ −nE[ℓ′′(θ0 |y)] = nI(θ0)
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Model comparison

Bayesian information criterion (BIC) cont’d

! −2 times the log prior predictive distribution is thus

−2 log p(y |Mi) ≈ −d log(2π) + d logn+ log det{I(θ0)}
− 2 log p(θ̂ |Mi)− 2 log p(y | θ̂,Mi)

! Dropping all terms that remain fixed as the sample size
approaches ∞ results in

−2 log p(y |Mi) ≈ BICi = −2 log p(y | θ̂,Mi) + d logn

! Small BIC values correspond to better models

! The Akaike Information Criterion is equal to

AICi = −2 log p(y | θ̂,Mi) + 2d

! Small AIC values also correspond to better models
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Model comparison

Bayesian model averaging

! Considering that some models perform equally well, it seems
reasonable to base inference on several models by using
Bayesian model averaging

! Model uncertainty is then accounted for by including
information from all models weighted by their posterior model
probability

! The model-averaged posterior of some quantity of interest ∆
with the same interpretation across models is given by

p(∆ |y) =
K
∑

k=1

p(∆ |Mk,y)p(Mk |y)
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Model comparison

Bayesian model averaging cont’d

! The posterior probability of model Mk is given by

p(Mk |y) =
p(y |Mk)p(Mk)

∑K
l=1 p(y |Ml)p(Ml)

,

where p(y |Mk) denotes the marginal likelihood of model Mk

and p(Mk) the prior probability that model Mk is true

! Assuming uniform prior model probabilities, the approximate
posterior model probability of model Mk is using the BIC given
by

p̂(Mk | D) =
exp

{

−1
2BICk

}

∑K
l=1 exp

{

−1
2BICl

}
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Model comparison

Bayesian model averaging for logistic regression

! The model-averaged posterior inclusion probability of a
predictor xi is given by

p(βi ̸= 0 | D) =
K∑

k=1

Mk
(βi)p(Mk | D)

The model-averaged posterior mean of βi is given by

E[βi | D] =
K
∑

k=1

E[βi |Mk,D]p(Mk | D)

07.11.2012 Statistical genetics: statistical concepts in a nutshell 41 / 55



Model comparison

Bayesian model averaging for logistic regression cont’d

! The model-averaged posterior variance of βi is given by

V[βi | D] =
K
∑

k=1

{(

V[βi |Mk,D] + E[βi |Mk,D]2
)

×

p(Mk | D)}− E[βi | D]2

! If the sample size of the observed data y is large, then the
posterior p(βi |y,Mk) of βi under model Mk is asymptotically
normal

! The mean is equal to the maximum likelihood estimator and
variance equal to respective diagonal element of the inverse of
the observed information matrix evaluated at the maximum
likelihood estimator
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Model comparison

Bayesian model averaging for logistic regression cont’d

! Dobutamine stress echocardiography study at the UCLA School
of Medicine from 1991 until it closed in 1996

! The aim of the study was to assess if measurements taken
during the stress echocardiography may be used to predict
cardiac death, heart attack or coronary heart disease

Top 5 posterior model probabilities

Rank Model Posterior
model
probability†

Cumulative
posterior mo-
del probability

Posterior
model
odds

01 M1 : posSE, dobEF, hxofHT, restwma 0.0948 0.0948 1.00
02 M2 : posSE, dobEF 0.0864 0.1812 1.10
03 M3 : posSE, dobEF, restwma 0.0818 0.2631 1.16
04 M4 : posSE, dobEF, hxofHT 0.0797 0.3427 1.19
05 M5 : posSE, dobEF, hxofHT, ecg 0.0719 0.4147 1.32
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Model comparison

Bayesian model averaging estimate

Predictor Posterior
inclusion
probability

Posterior
mean

Posterior
standard
deviation

95% equal tail in-
terval

lower upper

intercept 1.000 -0.34999 1.1031 -2.5120 1.8120
posSE 0.978 1.1126 0.2975 0.5295 1.6957
dobEF 0.882 -0.03617 0.0177 -0.0655 -0.0166
hxofHT 0.546 0.42712 0.4550 0.1586 1.4061
restwma 0.492 0.43209 0.5078 0.1647 1.5915
ecg 0.403 0.31211 0.4315 0.1419 1.4064
hxofMI 0.208 0.11074 0.2502 -0.0121 1.0750
hxofDM 0.147 0.06297 0.1811 -0.0753 0.9344
baseEF 0.132 -0.00277 0.0132 -0.0807 0.0388
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Model comparison

Summary

! Likelihood ratio tests require nested models and rely on
asymptotic approximations

! The BIC and AIC are tools that help balances model complexity
and fit, which is evaluated through the maximized likelihood.
The BIC prefers simpler models with small amounts of data, but
becomes willing to accept more complex ones with increasing
amount of data.

! Bayesian model averaging is a powerful tool to account for
model uncertainty. The BIC may be used to approximate
posterior model probabilities
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SNP association studies

Relationship between SNP genotype and phenotype

! Genetic information is stored in the DNA in form of 4
nucleotide bases

! The human reference genome is approximately 3 giga bases long
and any 2 humans differ in their genetic code by a small fraction

! Single Nucleotide Polymorphism (SNP) is a form of genetic
variation at a genetic site at which the nucleotide base between
2 humans differs

SNP

Human 1 · · · AGCTGCTGGCTTCCGCTACC · · ·
Human 2 · · · AGCTGCTGACTTCCACTACC · · ·
Human 3 · · · AGTTGCTGGCTTCCACTACC · · ·
Human 4 · · · AGCTGCTGGCTTCCGCTACC · · ·
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SNP association studies

Relationship between SNP genotype and phenotype cont’d

! The genotype is, among other factors, a strong influence on the
phenotype

! An association between genotype and phenotype may be
presumed for disease susceptibility, drug treatment or crop yields

! In case of drug treatments, some people react normally to the
treatment, whereas others show none or life-threatening effects

! A particular set of SNPs may be characteristic for these
phenotypes

! The goal of genome-wide association studies is then to reveal
SNP patterns that permit disease susceptibility screens or
personalized drug treatments
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SNP association studies

Relationship between SNP genotype and phenotype cont’d

! DNA carried by the chromosomes is present in 2 copies

! Without considering DNA copy number variation, the genotype
at a biallelic SNP is either

! AA - 2 copies of the common allele
! AB - 1 copy of each allele
! BB - 2 copies of the rare allele

where allele refers to the particular nucleotide base.

! The frequency distribution of a SNP genotype and phenotype
can be visualized in a contingency table

AA AB BB

Case nCaseAA nCaseAB nCaseBB nCase

Control nControlAA nControlAB nControlBB nControl

nAA nAB nBB n
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SNP association studies

General genotype count model: prospective model

! The counts may be modeled directly

AA AB BB

Case nCaseAA nCaseAB nCaseBB nCase

Control nControlAA nControlAB nControlBB nControl

nAA nAB nBB n

! In a prospective model, the phenotype is the random variable,
whereas the genotype variable is supposed to be known

! Under the null hypothesis H0, there exists no association
between both variables and thus

p(y | θ,H0) =

(
n

nCase

)

θn
Case

(1− θ)n
Control
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SNP association studies

General genotype count model: prospective model cont’d

! Assume that the prior of θ, which represents the probability of
being a case, is a Beta distribution

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1 ,

where the Beta function is equal to

1/B(α, β) = Γ(α)Γ(β)/Γ(α+ β)

! The prior predictive distribution is then

p(y |H0) =

(
n

nCase

)
1

B(α, β)

∫ 1

0
θn

Case+α−1(1− θ)n
Control+β−1 dθ

=

(
n

nCase

)
B(nCase + α, nControl + β)

B(α, β)
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SNP association studies

General genotype count model: prospective model cont’d

! Under the alternative hypothesis H1, the 3 genotypes are
assumed to be independent and thus

p(y | τAA, τAB, τBB,H1) =

(
n

nCase

)
∏

i∈{AA,AB,BB}

τn
Case
i

i ×

(1− τi)
nControl
i

! Assume that the prior of τi, which represents the probability of
being a case given that the genotype is i, has also a Beta
distribution
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SNP association studies

General genotype count model: prospective model cont’d

! The prior predictive distribution is then

p(y |H1) =

(
n

nCase

)
∏

i∈{AA,AB,BB}

1

B(α, β)
×

∫ 1

0
τn

Case
i +α−1

i (1− τi)
nControl
i +β−1 dτi

=

(
n

nCase

)
∏

i∈{AA,AB,BB}

B(nCase
i + α, nControl

i + β)

B(α, β)
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SNP association studies

General genotype count model: prospective model cont’d

! The prospective Bayes factor is

B10 =
p(y |H1)

p(y |H0)

=
B(α, β)

B(nCase + α, nControl + β)
×

∏

i∈{AA,AB,BB}

B(nCase
i + α, nControl

i + β)

B(α, β)

! Data-dependent hyperparameters may be used:

(α, β) = λ
(

nCase/n, nControl/n
)

,

which are uninformative in distinguishing H0 from H1 and
where λ is used to scale the effect size.
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Thank you for your attention
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