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Median-Joining Networks for Inferring Intraspecific Phylogenies

Hans-Jürgen Bandelt, Peter Forster, and Arne Röhl
Mathematisches Seminar, Universität Hamburg, Hamburg, Germany

Reconstructing phylogenies from intraspecific data (such as human mitochondrial DNA variation) is often a chal-
lenging task because of large sample sizes and small genetic distances between individuals. The resulting multitude
of plausible trees is best expressed by a network which displays alternative potential evolutionary paths in the form
of cycles. We present a method (‘‘median joining’’ [MJ]) for constructing networks from recombination-free pop-
ulation data that combines features of Kruskal’s algorithm for finding minimum spanning trees by favoring short
connections, and Farris’s maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called
‘‘median vectors’’, except that our MJ method does not resolve ties. The MJ method is hence closely related to the
earlier approach of Foulds, Hendy, and Penny for estimating MP trees but can be adjusted to the level of homoplasy
by setting a parameter «. Unlike our earlier reduced median (RM) network method, MJ is applicable to multistate
characters (e.g., amino acid sequences). An additional feature is the speed of the implemented algorithm: a sample
of 800 worldwide mtDNA hypervariable segment I sequences requires less than 3 h on a Pentium 120 PC. The MJ
method is demonstrated on a Tibetan mitochondrial DNA RFLP data set.

Introduction

The phylogenetic median-joining (MJ) network al-
gorithm which we present here offers new features com-
pared with our previous reduced median (RM) network
algorithm (Bandelt et al. 1995) in that it can handle larg-
er sets of genetic data, as well as multistate data such
as amino acid sequences. The MJ method begins with
the minimum spanning trees, all combined within a sin-
gle (reticulate) network. Aiming at parsimony, we sub-
sequently add a few consensus sequences (i.e., median
vectors, or Steiner points) of three mutually close se-
quences at a time. These median vectors can be biolog-
ically interpreted as possibly extant unsampled sequenc-
es or extinct ancestral sequences. The median operation,
also referred to as ‘‘Steinerization’’ in mathematics (in
which the most parsimonious realizations of MP trees
are called Steiner trees; see Hwang, Richards, and Win-
ter 1992), is basic to all fast MP heuristic algorithms,
although it is typically applied in a very restricted
(‘‘greedy’’) manner in order to arrive at a single tree
(Farris 1970). In contrast, the unconstrained use of the
median operation eventually generates the so-called full
quasimedian network (known as the full median net-
work in the case of binary data), which normally harbors
all optimal trees, as well as numerous suboptimal trees.
This quasimedian network is in general too complex for
visualization or even too large for storage in a computer.
With MJ, we take care that at each stage only those
median vectors which have a good chance of appearing
as branching nodes in an MP tree are generated by con-
sidering only triplets of sequences for which one se-
quence is linked to the other two in the network under
processing. An additional ranking of these candidate
triplets according to a distance score (as proposed by
Tateno 1990) allows further refinement of the triplet se-
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lection. After each round of median generation, the pro-
cess restarts with the thus enlarged set of sequences.

This approach, then, is quite similar to that of
Foulds, Hendy, and Penny (1979), which, unfortunately,
seems to have been rather forgotten in the field of bi-
ology after tree-building program packages became
widely available. The major differences between the two
methods are as follows: the criterion of selecting triplets
for median generation is different; MJ stops earlier (with
a postprocessing phase being optional, see below); and
MJ is more generous and flexible in that it uses an ex-
plicit parameter, «, fuzzifying the employed distance
measure, with the effect that by increasing «, MJ pro-
duces more median vectors simultaneously at each
stage. In the illustrative example using Tibetan mtDNA,
we compare the different network methods and show
how the network analysis guides the informed choice of
a single tree estimate in this particular case.

Minimum Spanning Networks

A minimum spanning tree for a set of sequence
types connects all given types without creating any cy-
cles or inferring additional (ancestral) nodes, such that
the total length (i.e., the sum of distances between linked
sequence types) is minimal. Kruskal’s (1956) algorithm
quickly finds one minimum spanning tree: in a prelim-
inary step the pairs of sequence types are listed in in-
creasing order of their distances (ordering of the pairs
with the same distance is arbitrary and serves as a tie-
breaking rule); then, the tree is built up by successively
selecting the first link from the preference list which
does not create a cycle together with the already chosen
links.

A simple modification of this algorithm (namely,
dropping the tie-breaking rule), allows one to construct
the union of all minimum spanning trees, which we will
call (by a slight abuse of language) the minimum span-
ning network. (This construction is completely analo-
gous to that proposed by Excoffier and Smouse [1994],
who constructed this network by departing from the al-
gorithm of Prim [1957]). Assume that there are k distinct
distance values, d1, d2 , . . . , dk, between the se-
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38 Bandelt et al.

FIG. 1.—Minimum spanning network displaying the mitochon-
drial ND3 variation in 61 Africans, Asians, and Europeans (data from
Nachman et al. 1996, table 1). This one-step network is identical to
the MJ and RM networks and contains all 15 MP trees. Circles (nodes)
represent sequence types, numbered from 1 to 14; areas of (and within)
circles are proportional to the number of sampled individuals. Transi-
tions are referred to by the nucleotide positions (numbered as in An-
derson et al. 1981); parallel lines in a reticulation represent mutations
at identical nucleotide positions and are thus labeled only once; su-
perscript refers to transversions. Sequence type 1 represents the Cam-
bridge reference sequence. At the right of the figure, gains and losses
(represented by arrows) of restriction sites 10394DdeI and 10397AluI
are explained. There is a single candidate for a most likely tree (in-
dicated by unbroken lines) when geographical information is taken into
account. First, it is likely that the link between type 8 (African) and
type 14 (European) can be dropped, as suggested by Nachman et al.
(1996). Second, the African mtDNA tree of Chen et al. (1995) includes
several restriction sites within ND3, which indicates that sequence
types 7 and 10 from Nachman et al. (1996) occur among the Biaka
(West Pygmies), and thus favors the paths from type 2 to type 1 and
from type 2 via type 7 to type 10. The branching and frequency pattern
of the resulting ND3 tree suggests that sequence type 2 is the root of
the tree.

FIG. 2.—The median vector X of binary sequences U, V, and W.

quences under consideration. We proceed in increasing
order of these values. At the beginning, no pair of se-
quence types is linked. For the recursive step, assume
that the next value to be processed is di, and the network
constructed so far is not yet connected, that is, it com-
prises several connected subnetworks (its components).
Then, add links between all sequence types from differ-
ent connected components that are at distance di. If the
resulting network is connected, the algorithm stops; if
not, it continues with the next value, di11. The proof that
the minimum spanning network is constructed in this
way is deferred to appendix 1. Easy to compute, the
minimum spanning network is of little direct use for
representing genetic data, since in general a minimum
spanning tree is far from being most parsimonious. It
serves, however, as a good point of departure in each
recursive step of our MJ network construction for gen-

erating additional inferred sequence types which reduce
tree length.

There are, however, rare cases in which the mini-
mum spanning network is a connected one-step network
and therefore provably contains all MP trees. In such a
case, the connected network consists of exactly those
links between sequence types which differ in only one
character (e.g., nucleotide position or restriction site).
This case can arise when the resolution of the employed
characters is fairly low and the sampling of the popu-
lation is sufficiently exhaustive; for example, the human
ND3 data set published by Nachman et al. (1996) can
be represented by a connected one-step network (fig. 1).
This network has two cycles sharing a link which give
rise to 15 MP trees (rather than 27, as claimed in Nach-
man et al. 1996).

We can conceive of obtaining the minimum span-
ning network by departing from the complete network
in which any two sequence types are connected by a
link with a length equal to the respective distance and
then deleting links sequentially as follows: First, order
the links from maximal to minimal length. Processing
links in this order, check for each step whether the link
under consideration joins two nodes which are connect-
ed by a path comprising only shorter links; whenever
this is the case, the processed link is deleted. This pro-
cedure may be shortened in updating a network. For
example, if a minimum spanning network is enlarged by
adding a single node with incident links, then one needs
to screen only the subnetwork formed by the new cycles
containing the added node (cf. Foulds, Hendy, and Pen-
ny 1979).

Median Vectors and Quasimedian Networks

For three aligned sequences, U, V, and W, there is
just one tree (the ‘‘star’’) connecting them. If all char-
acters corresponding to the sequence positions are bi-
nary, then this tree has a single most parsimonious re-
construction (MPR; see Swofford et al. 1996); namely,
the sequence that is assigned to the interior node in order
to realize minimum tree length is necessarily the median
vector X obtained by majority consensus (fig. 2). If,
however, m of the characters have three different states
in U, V, and W, then there exist 3m distinct MPRs. Three
of them are distinguished by minimizing the length of
one link (at the expense of the two others); for instance,
the sequence assigned to the interior node in an MPR
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Median-Joining Networks 39

FIG. 3.—The median vectors X, Y, and Z of sequences U, V, and W.

which is closest to U is sequence X, where for each two-
state character, the majority state is taken, and for each
three-state character, the state of U is taken. Similarly,
sequences Y and Z which minimize the distances to V
and W, respectively, are defined (see fig. 3 for an ex-
ample). The three sequences X, Y, and Z are called the
‘‘median vectors’’ of U, V, and W. The network com-
posed of the equilateral triangle with nodes X, Y, and Z
and three further links joining it with the sampled se-
quences U, V, and W then represents the distances be-
tween U, V, and W.

Given any sample comprising n sequences, one
may successively add median vectors as follows: At
each step, select any three sequences U, V, and W from
the pool of sequences sampled or created so far, and add
the median vector(s) of U, V, and W to the pool. Con-
tinue until no further new sequences can be generated.
The terminal pool of sequences can be organized as a
network in which two sequences U and V are linked
exactly when there is no third sequence X between them
(i.e., X is the median vector of U, V, and X). This net-
work is called the (full) quasimedian network generated
by the sampled sequences. When all characters are bi-
nary, this network coincides with the (full) median net-
work described by Bandelt et al. (1995). Mathematical
properties of quasimedian networks have been studied
and surveyed by Bandelt, Mulder, and Wilkeit (1994).
In practice, the quasimedian network generated by the
given data may be somewhat large due to homoplasy,
such that only a portion should be heuristically con-
structed by carefully selecting triplets of sequences for
median generation.

Median Joining
Prerequisites

The input data for our network algorithm comprise
correctly aligned sequences of a population sample. It
is stipulated that ambiguous states are infrequent and
recombination is absent. These requirements are met for
published human mtDNA RFLP and control region se-
quences as well as Y-chromosomal short tandem repeat
variation when a single-repeat mutation model is as-
sumed.

Distances
The simplest way to obtain a distance measure be-

tween two sequences is to count the number of character

differences (the ‘‘Hamming distance’’). As a refinement,
we may also weight character changes, albeit only in a
symmetrical fashion (i.e., giving both directions of
change between two states the same weight). The
‘‘weighted’’ Hamming distance between two sequence
types is then the sum of weighted differences.

Ambiguous States

Prior to network construction, missing or ambigu-
ous states in the sample are treated in the calculation of
distances as follows. An ambiguous state X is equated
with the set of states that specify this ambiguous state.
For instance, X 5 R (purine) would be equated with the
{A, G} pair of nucleotides, whereas X 5 N would mean
the set of all nucleotides, {A, G, C, T}. The weighted
distance between such sets of character states is equated
with the minimum (weighted) difference between the
states from those sets; for example, in the unweighted
case, the difference between R and N is 0, but that be-
tween R and T (thymine) is 1. Ambiguities in the char-
acter string of a sequence type are then specified at the
initial stage of the network construction, which is greed-
ily realized by comparing the ambiguous states in each
sequence with the definite states of the other minimally
distant sequences (with respect to the above distance
measure). An ambiguous state will be assigned to the
setting of the most common definite state of these se-
quences (ties being broken arbitrarily).

The Algorithm

For the algorithm, we specify a tolerance « up to
which we wish not to distinguish between distances. In-
creasing the parameter « widens the search for potential
new median vectors (incurred by the choice of links in
step 2, below) and also relaxes a distance criterion (step
4). (One could replace the single parameter « by a pair
of parameters governing the two steps separately, but
we choose not to do this here.) At each stage, the al-
gorithm constructs an initial part of the minimum span-
ning network (described by the ‘‘feasible’’ links) for the
current sequence types (i.e., sequence types under pro-
cessing), or, in the case in which « is set .0, the ‘‘«-
relaxed’’ minimum spanning network, which contains
additional feasible links (step 2). Triplets of sequence
types are admitted to median generation only if there
are at least two feasible links among them, but only
those median vectors are actually generated and added
to the current pool of sequence types for which the total
distance to the corresponding triplet attains the mini-
mum value plus « at most (step 4). The whole process
is iterated until no further median vectors can be gen-
erated following these rules. Some intermediate purging
of obsolete sequence types may be necessary (step 3).
The final network is then the minimum spanning net-
work of the expanded set of sequence types (step 5).

Phase I: Successive selection of median vectors.

Initialization: Specify « $ 0. The current sequence types
comprise the sampled sequence types.
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40 Bandelt et al.

Table 1
Four Sequence Types, A, B, C, and D, Defined by Five
Weighted Binary Characters

SEQUENCE

TYPE CHARACTERS

DISTANCES

A B C D

A . . . . . . . .
B . . . . . . . .
C . . . . . . . .
D . . . . . . . .
Weights . . .

0 0 0 0 0
1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
1 3 2 1 2

4 4
6

7
5
7

Step 1: Determine the distance matrix d for the current
sequence types, pool identical sequence types, and order
the different distance values as d1 , d2 , . . . , dk.

Step 2: Determine the links between sequence types
which describe the («-relaxed) minimum spanning net-
work, i.e., which are feasible with regard to « in the
following sense: two sequence types V and W are fea-
sibly linked if there is no path from V to W consisting
of sequence types V 5 U0, U1, . . . , Uk 5 W which fulfil
the inequality d(Ui, Ui11) , d(V, W) 2 « for all i 5 0,
. . . , k 2 1. Thus, V and W with d(V, W) 5 dj form a
feasible link if either dj 2 « # d1 or V and W belong
to different connected components of the ‘‘threshold’’
subnetwork in which sequence types are linked exactly
when their distance does not exceed di, where i is the
largest index with di , dj 2 «.

Step 3: Iteratively remove from the set of current se-
quence types those (obsolete) sequence types which are
not among the sampled sequences but are feasibly linked
to at most two current sequence types. If obsolete types
were detected, go back to step 2; else continue.

Step 4: Determine the feasible triplets U, V, and W of
sequence types, which are defined as follows: at least
two pairs from U, V, and W are feasibly linked, and at
least one median vector X of U, V, and W is not yet a
current sequence type. If there are no feasible triplets at
all, then continue with step 5. Otherwise, compute the
connection cost d(U, X) 1 d(V, X) 1 d(W, X) of the
median vectors X for each feasible triplet U, V, and W.
This value constitutes the length of MP trees connecting
U, V, and W. Compute the minimum connection cost l
for all feasible triplets U, V, and W. Now, generate all
median vectors X of feasible triplets for which the con-
nection costs do not exceed l 1 «. Expand the set of
current sequence types with these new median vectors.
Go back to step 1.

Phase II: Construction of the final network.

Step 5: Calculate the minimum spanning network for
the new set of current sequence types. This can be ac-
complished by performing a pass through step 3 with
parameter « set to zero (so that only minimum length
connections are taken into account); then, the feasible
links with regard to « 5 0 yield the minimum spanning
network. If obsolete median vectors are present, remove
these and repeat step 5. If not, these feasible links de-
scribe the final network.

The construction ensures that every link between
two sequence types V and W in the final network has
the same length as any shortest path between V and W
in the sequence space endowed with the (weighted)
Hamming distance. The segment bounded by V and W
in this space consists of all possible sequences Z be-
tween V and W, that is, lying on shortest paths between
V and W in the space or, equivalently, satisfying d(V, Z)
1 d(W, Z) 5 d(V, W). Two segments in the sequence
space bounded by pairs V, W and X, Y of sequence types
that are linked in the final network never intersect when-
ever V and W are distinct from X and Y, that is, there is

no possible sequence type Z between V and W as well
as between X and Y (see appendix 2 for a proof). We
can therefore select any of the shortest paths from the
sequence space in order to connect linked sequence
types without creating any internal node twice. A simple
consequence of this observation is that for binary data
free of homoplasy, the unique most parsimonious tree
representing them is reconstructed by this network
method.

Illustrations
Example 1

In order to show the MJ algorithm at work, we
consider an artificial data set consisting of four sequence
types, A, B, C, and D, defined by five weighted binary
characters (see table 1, which also displays the weighted
Hamming distances). There are four different distances
within the initial data set: d1 5 4, d2 5 5, d3 5 6, and
d4 5 7. We now determine the d-step components, that
is, the connected components of the subnetwork in
which pairs of sequences are linked when their distance
does not exceed d, for each choice of d from d1, d2, and
d3. At d 5 d1 5 4, we can link sequence A to both
sequence B and sequence C, thus obtaining the two four-
step components {A, B, C} and {D}. At d 5 5, we can
also link sequences B and D so that a single five-step
component {A, B, C, D} arises, thus ending the search
for d-step components. Therefore, the three pairs A, B
and A, C and B, D are feasibly linked for every choice
of «. Thus, A, B, C and A, B, D constitute feasible trip-
lets, from which median vectors U 5 10000 and V 5
01000 can be generated at connection costs 7 and 8.
Now, the process depends on the actual setting of the
parameter «.

We begin with « 5 0. Then, only the median vector
U is generated at minimum cost l 5 7 in the first round.
The distances from U to A, B, C, and D equal 1, 3, 3,
and 8, respectively. The new distance values of the ex-
panded set of sequences are thus d1 5 1, d2 5 3, d3 5
4, d4 5 5, d5 5 6, d6 5 7, and d7 5 8. The one-step
components are {A, U}, {B}, {C}, and {D}, and the
three-step components are {A, B, C, U} and {D}, which
are also the four-step components. These are then
merged into the single five-step component. We thus
have feasible links from A to U, B to D, B to U, and C
to U. Notice that the pairs A, B and A, C are not joined
by a feasible link because they are at distance 4 from
each other and belong to a common d-step component
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Median-Joining Networks 41

FIG. 4.—MJ networks (drawn to scale) constructed from the data
of table 1 with three different settings (a–c) of the parameter «; inferred
sequence types U, V, W, X, Y, and Z are added to the growing network
as median vectors.

Table 2
Six Sequence Types, A1, A2, B1, B2, C, and D, Defined by
Six Binary Characters and One Ternary Character

SEQUENCE

TYPES CHARACTERS

DISTANCES

A1 A2 B1 B2 C D

A1 . . . . . . .
A2 . . . . . . .
B1 . . . . . . .
B2 . . . . . . .
C . . . . . . .
D . . . . . . .
Weights . .

G
A
A
A
A
A
1

A
G
A
A
A
A
2

A
A
G
A
A
A
1

A
A
A
G
A
A
2

A
A
A
A
A
G
2

A
A
A
A
G
G
2

A
A
G
G
C
A
2

3 4
5

5
6
3

5
6
5
6

5
6
7
8
4

at d , 4. Obtaining no further feasible links, the algo-
rithm stops (as triplets A, B, U and A, C, U and B, C,
U and B, D, U generate only median vectors which are
among the current sequence types). The former feasible
links yield a connected network which describes an MP
tree.

Setting the parameter « to 1, the starting situation
is exactly the same as with « 5 0, except that we must
now check all pairs of sequences which do not exceed
distance 5 1 « 5 6 for feasible linkage. Pair B, C must
be checked also, but it does not constitute an additional
feasible link, since sequences B and C belong to a com-
mon d-step component at d , 6 2 « 5 5. We then
obtain the same feasible links, feasible triplets, and min-
imum value for l as for « 5 0. Now, we have to gen-
erate all median vectors of feasible triplets not exceed-

ing connection cost l 1 « 5 7 1 1 5 8. Thus, for « 5
1, both median vectors U and V are generated. The dis-
tances from V to A, B, C, D, and U equal 3, 1, 7, 4, and
4, respectively. The one-step components are now {A,
U}, {B, V}, {C}, and {D}; the three-step components
are {A, B, C, U, V} and {D}; and for d $ 4, all six
sequences are within one d-step component {A, B, C, D,
U, V}. In the current set of six sequence types, feasible
links connect A, B, U, and V among each other; fur-
thermore, they connect C to A and U as well as D to B
and V. Since no feasible triplets arise, the algorithm ter-
minates with the network of figure 4b.

The final setting, « 5 2, will eventually yield the
full median network generated by the data matrix, thus
displaying the full homoplasy of this data set. At the
outset, all links between the given sequence types are
feasible. Then, all triplets are feasible. The median vec-
tors U, V, W (00100), and X (11100) are generated at
connection costs not exceeding 7 1 2 5 9. In the ex-
panded set of sequence types, the triplets C, U, W and
D, V, X are feasible, producing median vectors Y
(10100) and Z (01100) at connection costs 4 and 5, re-
spectively. The resulting 10 sequence types yield the
final network shown in figure 4c. This constitutes a me-
dian network, since the median vectors for all 120 trip-
lets of distinct sequence types are already found among
the 10 sequence types.

Example 2

To demonstrate the MJ method with multistate
characters, consider the following artificial data set com-
prising six sequences, A1, A2, B1, B2, C, and D, with
seven weighted positions (see table 2). These sequences
generate the quasimedian network displayed in figure 5,
in which the prism signifies the incompatibility of the
single ternary character with one binary character. MJ
with « 5 2 or larger retrieves this network. When setting
« 5 1 instead, three median vectors are generated in the
first round: V from the triplet A1, A2, B1, and W from
A1, B1, B2, both at connection cost 6, as well as X from
A1, C, D at cost 7; no further median vectors are gen-
erated, so MJ terminates with the unique MP tree for
these data. In contrast, MJ with « 5 0 first generates V
and W, and then, in the second round, it adds both X
and Y at connection cost 6. We thus have the seemingly
paradoxical situation (although it is rarely seen with real
data) that the MJ network may shrink when passing
from « 5 0 to « 5 1.

 at N
ational L

ibrary of H
ealth Sciences on N

ovem
ber 11, 2013

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


42 Bandelt et al.

FIG. 5.—MJ network with « 5 2 constructed from the data of
table 2. The unique MP tree is indicated with bold lines and coincides
with the MJ network for « 5 1. Unbroken lines constitute the MJ
network for « 5 0.

Comparison with the Method of Foulds, Hendy, and
Penny (1979)

The approach taken by Foulds, Hendy, and Penny
(1979) to exactly determine the MP trees for data sets
(of small size) entails a heuristic network method, which
is comparable to our MJ algorithm with parameter « 5
0, albeit with some differences. Steps 1 and 2 are per-
formed the same, whereas step 3 (elimination of obso-
lete sequence types) is not explicitly mentioned by those
authors but would clearly fit their strategy. The selection
of median vectors in step 4 to be added to the growing
network is quite different. To describe this, consider
pairs U, V and U, W of feasibly linked sequence types
such that the median vector X (for the triplet U, V, W)
nearest to U is different from U (as in figs. 2 and 3);
say that X is within the search radius max(d(U, V), d(U,
W)) and yields the positive profit d(U, X). Now, create
those median vectors X, maximizing the profit within
the smallest possible search radius in which new median
vectors would arise, expand the set of current sequence
types by these created median vectors, and otherwise
proceed with step 5 of MJ. We refer to the resulting
network as the ‘‘greedy FHP network’’ (prior to further
processing).

The complete approach of Foulds, Hendy, and Pen-
ny (1979) is somewhat difficult to compare with the MJ
algorithm for « 5 0, since the former employs the ex-
plicit comparison of the length of the shortest trees con-
necting the sampled sequences within the network with
a calculated lower bound for the length of MP trees.
This comparison, however, cannot effectively be real-
ized for very large data sets. We deliberately interpret
their approach as consisting of two phases: an initial
phase, essentially yielding the greedy FHP network, and
a final phase at which the network may further grow in
order to capture additional putative MPRs. Specifically,
each pair U, V of sampled sequences for which the
length of a shortest path in the current network exceeds
the input distance is processed separately: add an arti-

ficial feasible link between U and V, and seek to create
new median vectors by reiterating the previous phase.
By way of illustration, consider the greedy FHP network
in example 1, given by the MP tree of figure 4a. In this
tree, the pairs A, D and C, D do not have their input
distances realized because of homoplasy. When execut-
ing A, D first, we would create the extra link between
A and D and thereby force the triplet A, B, D to become
feasible, from which V is obtained as a median vector.
This leads to the network shown in figure 4b. Introduc-
ing the extra link between C and D to this network gives
rise to the feasible triplets C, D, U and C, D, V, from
which Y and Z are generated as median vectors. Both
vectors, however, are subsequently removed as being
obsolete, at which point the procedure terminates. On
the other hand, when executing the pair C, D before A,
D, the forced link between C and D yields the feasible
triplets C, D, U and B, C, D, from which Y and X are
now generated. The two median vectors become linked
in the minimum spanning network for A, B, C, D, U, X,
and Y and thus survive the purging of obsolete sequenc-
es. The pair A, D then still needs treatment: adding an
extra link between A and D produces the median vector
Z from A, D, X, which, however, remains obsolete and
is removed. We thus see that one may obtain different
networks in the final phase, depending on the order in
which the pairs are processed. Even if we took the sub-
network comprising all temporarily constructed se-
quences V, X, Y, and Z together with A, B, C, D, and U,
we would still dismiss those most-parsimonious recon-
structions which include the node W.

Case Study

The effectiveness of network analyses (along with
appropriate weighting) for refining our understanding of
human mtDNA evolution will now be demonstrated
with the Tibetan RFLP data from Torroni et al. (1994).
Variation at the two restriction sites 10394DdeI and
10397AluI in the human mitochondrial genome defines
the deepest currently known phylogenetic split within
non-African mtDNA, distinguishing supergroup M (both
sites present; rare in Europeans but frequent in Asians)
from the other supergroup (both sites absent; frequent
in both Europeans and Asians). However, because the
two recognition sites overlap, it is conceivable that a
mutation in the overlap of the two sites may occasion-
ally cause a secondary loss of both sites. This occur-
rence has already been postulated by Torroni et al.
(1993) and can now be confirmed with the ND3 data
from Nachman et al. (1996) (see fig. 1; the double loss
is induced by a mutation at nucleotide position [np]
10397). Two out of five Eurasians with T at np 10400
(characterizing the supergroup M; see Torroni et al.
1996) have the np 10397 mutation, which indicates that
sequencing of np’s 10397, 10398, and 10400 (cf. fig. 1)
rather than RFLP analysis is required to identify M
membership reliably.

Single-hit losses of the overlapping sites
10394DdeI/10397AluI would be most disturbing for
phylogenetic analyses of Asian mtDNA RFLP data if
we did not downweight these sites. In the Tibetan RFLP
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data from Torroni et al. (1994), which we reanalyze ig-
noring the unreliable site 16517HaeIII (Chen et al.
1995), no MP tree exists which would recognize this
double loss as one event in sequence types 131 and 135
within mtDNA group D. There are, however, such MP
trees once sites 10394DdeI and 10397AluI are each
weighted by 1/2; employing this weighting, the greedy
FHP network comprises exactly the 4 3 4 3 15 5 240
different most-parsimonious realizations of all MP trees
for this data. MJ with « 5 0 offers one additional me-
dian vector, namely that for the triplet 146, 147, 62,
along with three additional links (dotted in fig. 6). The
RM network, in contrast, does not incorporate all MP
trees, as a result of the hypothesis of a parallel event at
5259AvaII/5261HaeIII rather than at 12406HpaI/HincII.
The MJ network with « set to 1 (not shown) would
embrace this alternative as well.

A most plausible MP solution (highlighted in fig.
6) is obtained by taking into account mtDNA type fre-
quencies and downweighting highly mutable sites: dou-
ble losses of sites 10394DdeI/10397AluI are quite likely,
and all MP trees suggest that both 15925HpaII and
1667DdeI/1670AluI have experienced at least two in-
dependent mutations. This tree agrees quite well with
the tree presented by Torroni et al. (1994), even though
they incorporated the unstable site 16517HaeIII in their
analysis. Note that, departing from our tree, it requires
no fewer than six mutations to explain the distribution
of site 16517HaeIII, whereas all other sites are estimated
to have experienced three or fewer mutations (see also
Forster et al. 1997). A notable improvement to the tree
presented by Torroni et al. (1994) is our proposed phy-
logeny for mtDNA group F, which suggests that
16303RsaI (corresponding to np 16304) is a useful con-
trol region marker for group F.

Setting of the Parameter «
Generalizing from the Tibetan case study and oth-

ers not recorded here, we recommend running MJ with
« 5 0 for human mtDNA RFLP data, provided that no-
toriously noisy sites in the control region (e.g.,
16310RsaI, 16517HaeIII) are downweighted. In any
case, postprocessing (described below) is encouraged, as
is a trial with « 5 1 to explore the homoplasy of the
data. For the more homoplasious human mtDNA control
region sequences, differential weighting of sites is even
more important, and it is advisable to compare the « 5
0 network with the « 5 1 network, to employ only fre-
quent sequence types, or even to resort to a hybrid ap-
proach (see below). In general, the longer the maximum
length of links and the sparser the sampling, the higher
the setting of « should be. These recommendations are
valid for a data set with a weight of 1 for most char-
acters. For example, a choice of « 5 4 has the same
effect as « 5 0 if all weights of characters are multiples
of 5. Therefore, increments of « are only effective when
scaled to increments in the distance matrix of sequences.

Implementation
Data Reduction

In view of the time the algorithm will take to cal-
culate the network, it is advisable to reduce the data set

to a minimum. It is routine to first group identical se-
quences into sequence types for which the sample fre-
quency is recorded. Moreover, all sequence positions
which are unvaried in the data set are eliminated. Sec-
ond, we can take a look ahead and predict which small
‘‘peripheral’’ one-step subnetworks (such as pendant
one-step subtrees) will inevitably show up in the result-
ing MJ network, no matter how the parameter « is cho-
sen. These peripheral subnetworks can be constructed
separately, so that the algorithm will run on a smaller
data set, producing a smaller MJ network to which the
separately erected ‘‘extremities’’ are attached later. For
instance, every sequence type linked to exactly one oth-
er sequence type in the full quasimedian network may
be eliminated. To identify such a type Z in the data set,
we check whether there exists some type W such that
the characters distinguishing Z from W are binary (un-
informative) characters for which all sequence types dif-
ferent from Z share the same state. We then remove Z
from the further-processed sample of types and continue
the search. Moreover, we will erase any four-cycle of
sampled sequences, which would be peripheral in the
full quasimedian network, by deleting its linked pair of
types not linked to any type outside of this four-cycle.
To this end, we check whether there exist four sequence
types W, X, Y, and Z, distinguished by only two binary
characters, a and v, such that Y and Z have one state
with respect to v, and all remaining types (in the pro-
cessed sample) have the other state, while a distinguish-
es W, Z from X, Y. Then, W, X, Y, and Z form a pe-
ripheral four-cycle attached to the linked types W and
X; remove Y and Z from the processed sample, and con-
tinue until no further peeling is possible. Note that the
calculation of median vectors in the processed sample
for the algorithm is not affected by the removal of these
peripheral parts. All eliminated sequences are, of course,
resurrected in the final network display.

Running Times

We have implemented the MJ algorithm with the
data reduction as described, accepting character weights
and any choice of «. The program Network 1.5 (Röhl
1997) accepts up to 9,000 different sequences distin-
guished at up to 252 characters. The resulting network
is graphically displayed and is also described by a list
of links.

To demonstrate the efficiency of the MJ method,
we tested a worldwide sample comprising 2,055 human
mtDNA control region sequences (hypervariable seg-
ment I, with 199 varied positions). After pooling iden-
tical sequences, there are 1,272 different sequences in
this sample. The data reduction further eliminates 14
sequences and 14 positions before executing the core
algorithm. Positions are weighted uniformly and the pa-
rameter « is set to 0. The algorithm takes 25 rounds for
median generation. The final network has 548 median
vectors (which are not among the sampled sequences).
The running time on a personal computer (IBM Cyrix
6X86 1501, similar in speed to a Pentium 120) was 26
h and 21 min. If we limit the reduction process to the
pooling of identical sequences (so that we have 1,272
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44 Bandelt et al.

FIG. 6.—MJ network (« 5 0) for Tibetans, based on mtDNA restriction sites (Torroni et al. 1994; sites 10394DdeI and 10397AluI are
weighted 1/2; site 16517HaeIII is disregarded, but its presence is indicated by ‘‘1’’ accompanying the sequence types; an error in the original
table concerning the status of 10394DdeI/10397AluI in mtDNA type 118 has been corrected). Designation of sequence types, restriction sites,
and mtDNA groups A to G accords with Torroni et al (1994). A slash indicates that a site is recognized by more than one restriction enzyme,
and underlining denotes resolved recurrent mutations. Arrows point to presence of restriction sites; areas of circles are proportional to the
numbers of sampled individuals. The dotted links do not appear in any MP trees; the unbroken links indicate a plausible MP tree (see text).
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Table 3
Results with Data Reduction for Sequences Randomly
Drawn from 2,055 mtDNA Control Region Sequences
(hypervariable segment I)

Number
of Input

Sequences
Number of

Eliminated Sequences
Running Time for
Data Reduction (s)

300 . . . . . . . . .
350 . . . . . . . . .
400 . . . . . . . . .
450 . . . . . . . . .
500 . . . . . . . . .
550 . . . . . . . . .
600 . . . . . . . . .
650 . . . . . . . . .
700 . . . . . . . . .
750 . . . . . . . . .
800 . . . . . . . . .

67
79

106
103
124
150
166
192
289
233
229

34
45
51
57
82
80

101
155
137
219
183

Table 4
Results for the MJ Algorithm Applied to the Reduced
Data Sets of Table 3

Number
of Input

Sequences
Number of

Varied Positions

Number of
Generated

Median Vectors
Running Time

(s)

223 . . . . . .
271 . . . . . .
294 . . . . . .
347 . . . . . .
376 . . . . . .
400 . . . . . .
434 . . . . . .
458 . . . . . .
511 . . . . . .
517 . . . . . .
571 . . . . . .

128
120
127
137
130
143
145
144
152
146
153

144
138
195
182
232
181
207
230
238
195
260

943
1,587
1,240
3,221
4,652
4,508
6,361
7,193
8,812
7,833

10,420

different sequences of length 199), then we get a run-
ning time of 28 h—an increase of 6.3%. In contrast, the
data reduction takes only 0.7% of the total running time.
It thus pays to perform the reduction.

To obtain a rough estimate of the average com-
plexity of the algorithm, we randomly drew 300–800
sequences from the above data set and subjected them
to the algorithm. Table 3 lists the numbers of sequences
employed, along with the numbers of varied sequence
positions, the numbers of sequences eliminated in the
data reduction phase, and the time needed for this. The
reduced data sets in each case are then executed by the
algorithm, and the running times are recorded (see table
4). For estimating the time complexity of the algorithm,
we measure the amount of the input (reduced) data by
counting the total number m of entries in the aligned
sequences (i.e., multiplying the numbers of input se-
quences and of varied positions), and then assume a
functional relationship of computing time t and size m
of the form t ø amb. With a least-squares approach ap-
plied after taking logarithms, we estimate from table 4
that a ø 1.6 3 1027 s and b ø 2.2. Applying this for-
mula to the complete data set after data reduction (i.e.,
1,258 sequences of length 185), we would expect a run-
ning time of 28 h and 30 min. Compared with the actual
running time, this is an overestimate of more than 8%.

Since the number of varied sites in HVS-I increases
very slowly with sample size and is bounded by the
segment length, we may express the expected total run-
ning time (including data reduction) in terms of the
number of sampled sequences. For larger data sets (with
sizes above 500), we still observe an average case com-
plexity on the order of 2.2.

Postprocessing
After having run MJ with different settings of «

(and possibly alternative weighting schemes for the se-
quence positions), one should focus on certain parts of
the MJ network, namely nontrivial blocks and large
cells, in order to enhance a parsimony search. A block
of a network N is any maximal connected subnetwork
which cannot be disconnected by deleting any one of its
nodes. The blocks of a tree are all trivial; i.e., they are

formed by the pairs of linked nodes. Every cycle in N
extends to a nontrivial block (located within the ‘‘tor-
so,’’ which is the smallest connected subnetwork of N
containing all nontrivial blocks). Two distinct blocks can
intersect in at most one node. Nodes occurring in more
than one block are called cut nodes. Deletion of a cut
node then disconnects N. The network N is therefore
built up in a cactuslike fashion from its blocks. For ex-
ample, the network of figure 4c has one nontrivial block,
the cube, and two trivial blocks, the pendant links. As
long as there is no ‘‘obsolete’’ block (i.e., a block with
exactly one cut node and harboring no sampled se-
quence different from the cut sequence), every tree sub-
network of an MJ network N which connects the sam-
pled sequences necessarily includes all cut nodes of N.
In contrast, one may remove any single node which nei-
ther is a cut node nor is represented by a sampled se-
quence and still retain a subnetwork connecting the
whole sample. Since all tree estimates realized within N
are unanimous about the inclusion of the sequences la-
beling the cut nodes, we may treat these sequences as
if they were actually sampled and rerun MJ with the
thus expanded data set, this time applying it to each
block separately. For example, consider the three super-
imposed MJ networks (« 5 0, 1, 2) in figure 5. The MJ
network for « 5 2 has V, W, and X as its cut nodes,
giving rise to six blocks, the prism, and five pendant
links. MJ applied to C, V, W, and X recovers the prism
whenever « $ 1 is chosen, but with « 5 0, no median
vector is generated, as C, V, W, and X form a one-step
path. Consequently, the MJ network for « 5 0 shrinks
to the MP tree, whereas the MJ network for « 5 1 ex-
pands to the full quasimedian network, thus eliminating
the nonmonotonicity anomaly in this case. Another in-
stance in which this postprocessing of blocks comes into
play is in the MJ network (with « 5 0) of figure 6. The
torso of this network comprises four (nontrivial) blocks,
namely two four-cycles and two ‘‘dominoes’’ (each
composed of two four-cycles sharing a link). The dom-
ino harboring types 143 and 146 includes three unla-
beled cut nodes; applying MJ with « 5 0 to these five
sequences does not generate the sixth node of the dom-
ino anymore. Therefore, postprocessing the blocks here
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46 Bandelt et al.

FIG. 7.—MJ networks for amino acid sequences of primate AB0 blood group enzymes, based on examined positions 153–283 (Saitou and
Yamamoto 1997, table 3, but with amino acid P at position 157 transferred from Ch3 to Ch5). Prefixes Ch, Go, Or, Mac, and Ba stand for
chimpanzee, gorilla, orang-utan, macaque, and baboon, respectively, whereas the unprefixed labels refer to human AB0 enzymes. The full
network represents the raw MJ network for « 5 1; the postprocessed network for « 5 1 is obtained by deleting the obsolete nodes and links
indicated by dotted lines; the MJ network for « 5 0 is described by the unbroken lines. Underlining indicates resolved multiple hits at a position.

results in the network exactly composed of the MP trees
(which coincides with the greedy FHP network).

The MJ algorithm cannot guarantee that all obso-
lete intermediate sequence types will be eliminated in
step 3, since the quick test for the number of incident
links cannot detect obsolete groups of tightly clustered
sequences. To give an illustration, consider the amino
acid sequences of primate AB0 blood group enzymes
compiled by Saitou and Yamamoto (1997, table 3). Set-
ting « to 1 (and disregarding four partially unexamined,
uninformative positions), we obtain the MJ network
shown in figure 7 for these data; the three nodes incident
with the dotted links are remnants of preliminary con-
nections abandoned later in the course of the algorithm.
(For « 5 0, these nodes are no longer present, but for
« $ 2 they become functional in that they provide al-
ternative connections.) Postprocessing the single non-
trivial block for « 5 1 eliminates these three sequence
types along with the incident links. The postprocessed

network decomposes along the cut node represented by
the human sequence A1-1/A3-1 into the full quasimedian
network for the AB0 enzymes from humans, chimpan-
zees, and gorillas on one side and the perfect tree linking
the AB0 enzymes from orang-utans, baboons, and ma-
caques with A1-1/A3-1 on the other side. According to
this network, positions 176 and 235 each have experi-
enced two changes (but caused by mutations at different
nucleotide positions at the DNA level). Strikingly, ami-
no acid positions 266 and 268 have mutated in concert
at least twice and possibly three times during the diver-
gence of humans, gorillas, and orang-utans. These two
amino acid changes are necessary and sufficient to con-
vert a blood group A enzyme to a functional blood
group B enzyme, suggesting that their recurrent appear-
ance in primate evolution may have been selected for
(Saitou and Yamamoto 1997).

The most alarming substructures in MJ networks
that need closer investigation are large cells. The cells
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of a network N are, intuitively speaking, kinds of min-
imal cycles from which the nontrivial blocks of N are
built up. More precisely, using mathematical jargon, a
cell is any cycle which cannot be obtained as the ‘‘mod-
ulo 2’’ sum of cycles with fewer links in the linear space
(over the prime field) associated with the set of links of
N. The cells in a full quasimedian network (and inci-
dentally, in all the networks shown in this article) are
three- or four-cycles. We then speak of a large cell if its
number of links exceeds four. Arbitrarily large cells can
easily be generated from artificial data sets; consider, for
instance, n $ 6 binary sequences A1, A2, . . . , An of
length n, where the ith position is 1 at Ai and Ai11, but
0 otherwise (indices read modulo n). The MJ network
of this data set for « $ 2 is the full median network,
which resembles a rosette or bouquet of four-cycles.
When MJ is applied with « # 1 instead, a two-step cycle
is obtained which coincides with the minimum spanning
network. The length of a minimum spanning tree (path)
equals 2n 2 2 here. In contrast, the MP trees have length
(3/2)n if n is even and (3/2)n 1 (1/2) if n is odd. Thus,
the length differences between spanning path and MP
tree grow linearly with n. In practice, large cells may
occur for several reasons: either homoplasy is generally
high and the choice of « was too low (the result of a
desire to produce a treelike or at least drawable net-
work), or recombination (gene conversion, etc.) has par-
tially acted on the data, or ambiguities of states in the
sampled sequences are too frequent, or artifacts, such as
contamination or documentation errors, are present. It is
then recommended to generate the full quasimedian net-
work of the sequences (whether sampled or reconstruct-
ed) representing the nodes of a particular large cell and
to investigate the causes for its appearance in the MJ
network under study.

Hybrid Approaches

The construction of the MJ network may be en-
hanced by running the RM method beforehand. RM op-
erates in a fashion complementary to MJ in that it first
resolves some character conflicts and eventually returns
an extended data matrix with more characters but a re-
duced level of homoplasy. RM may also be regarded as
parameter-driven: the crucial parameter r (the ‘‘reduc-
tion threshold’’), set equal to 2 by default, expresses, in
equation (5) of Bandelt et al. (1995), how much larger
the total weight of compatible characters compared with
a conflicting character must be in order to postulate a
parallelism for the latter. Thus, lowering r toward 1
leads to further ‘‘reduction’’ of network reticulations
into more treelike networks, thereby increasing the risk
of discarding the true evolutionary paths, whereas a re-
duction threshold r $ 2 (as we would recommend when
RM is combined with MJ for « # 1), postulates fewer,
but more obvious, recurrent events beforehand.

MJ and RM alone may not be ideally suited to data
supporting potential phylogenies with rather long
branches. In these cases, MJ may also be combined with
other tree-building methods, since it explores a restricted
solution space in the (joint) neighborhood of postulated

trees. To this end, one would apply MJ to a set of se-
quences which comprises the original data set plus an-
cestral sequences hypothesized either from tree-building
methods applied to the original data or from network
analyses of smaller subsets, thus allowing for a hierar-
chical approach.
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APPENDIX 1

We verify that the constructed network N comprises
exactly the links occurring in minimum spanning trees.
Consider any link from N between sequence types X and
Y of length di. Select a preference ordering for the pairs
of sequence types at distance di where the pair X, Y
comes first. Since the link X, Y connects different com-
ponents of the partial network constructed up to distance
di21, there cannot be any path between X and Y for
which all links have lengths di21 or smaller. Kruskal’s
algorithm (after having processed the pairs of sequence
types at distances #di21) would then select the link X,
Y, given the prescribed preference ordering. On the other
hand, the network N must include all links of an arbi-
trary minimum spanning tree T. Suppose the contrary;
namely, let the pair U, V constitute the shortest link of
T that would not be found in N. When this link is re-
moved, T falls to two connected components. Necessar-
ily (as T is minimal), all links of N connecting these two
components have lengths of at least the distance di of U
and V. Therefore, in the construction of N, the sequence
types U and V belong to different components of the
partial network erected right after distance value di21 has
been processed. The link U, V would then be added to
the growing network at the next stage (for distance val-
ues di), contrary to our assumption.

APPENDIX 2

It remains to verify that the segments bounded by
disjoint pairs V, W and X, Y of linked sequence types
(having no ambiguous states) from the constructed net-
work do not intersect. Suppose the contrary; then there
is some vector Z (from the sequence space) satisfying

d(V, Z) 1 d(W, Z) 5 d(V, W)

and

d(X, Z) 1 d(Y, Z) 5 d(X, Y) (1)

where d is the (possibly weighted) distance in sequence
space. Then,

d(V, X ) 1 d(W, Y )

# d(V, Z ) 1 d(X, Z ) 1 d(W, Z ) 1 d(Y, Z )

5 d(V, W ) 1 d(X, Y ) (2)
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by virtue of the triangle inequality and equality (1). Sim-
ilarly,

d(V, Y) 1 d(W, X) # d(V, W) 1 d(X, Y). (3)

Assume

d(V, W) # d(X, Y). (4)

Let d be the largest distance strictly smaller than d(V,
W) between sequence types from the network. Since the
pairs V, W and X, Y constitute feasible links (with regard
to « 5 0), we can state—after interchanging the roles
of X and Y if necessary—that neither V and X nor W
and Y are within a d-step component. In particular, the
distances for these pairs exceed d and thus are bounded
by d(V, W) from below. Assuming

d(V, X) # d(W, Y) (5)

without loss of generality, the preceding fact may be
expressed by the single inequality

d(V, W) # d(V, X). (6)

Moreover, as X and Y do not belong to the same d-step
component,

d(X, Y)

# min(max(d(V, X), d(V, Y)), max(d(W, X), d(W, Y))).

(7)

In view of inequality (5), this may be simplified to

d(X, Y) # max(d(W, Y), min(d(V, Y), d(W, X))). (8)

If d(X, Y) # d(W, Y) is true, then combining this in-
equality with inequalities (6) and (2) implies that equal-
ity must hold throughout, and in particular,

d(V, W) 5 d(V, X)

and

d(X, Y) 5 d(W, Y) (9)

would be true. If, however, d(X, Y) . d(W, Y), then
inequality (3), together with inequality (8), would yield
the equalities d(V, W) 5 d(X, Y) 5 d(V, Y) 5 d(W, X),
which are then in conflict with d(V, W) # d(W, Y) ,
d(X, Y) (employing inequalities 5 and 6). We conclude
that equality (9) is indeed the only alternative. Since
inequality (2) is thus an equality, it follows that

d(V, Z) 1 d(X, Z) 5 d(V, X). (10)

Hence, Z belongs to both segments from V to W and
from V to X, respectively. We conclude that there would
be a median vector for the triplet V, W, X which is nec-
essarily different from V, W, X. This, however, would
contradict the status of feasible links (such as the pairs
V, W and V, X) in the final network. This settles the
claim.
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