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Lecture 12.11.2013

COALESCENCE THEORY  AND  SELECTION  TESTS

Population genetics theory gives the basics for understanding how a population evolves under a given
set of conditions. Evolution is a forward process: the genetic composition, allele and genotype
frequencies change with time.

Hardy-Weinberg-model, the basic null model, states that no change unless evolutionary
factors - selection, genetic drift, mutation, gene flow from other populations – are in action.

Prospective population genetics theory dominated for decades, after the seminal work of
Sewall Wright, R.A. Fisher, J.B.S. Haldane, and Motoo Kimura. Although all this work is
important and provides strong theoretical framework for understanding populations, current
data analysis needs another viewpoint, too.

In practice, in real situations for the researcher, the characteristics of a natural population (or a human
population), are examined by taking samples from the population. Interesting biological questions that
arise from a sample are mostly retrospective, such as the history of the population that gave rise to the
sample, or the evolutionary mechanisms responsible for the characteristics observed.

The accumulation of DNA sequence data since the 1980s has transformed the mainstream
of population genetics research from prospective to retrospective, from demonstration of
principles to inference of events that happened in the past.
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INRODUCTION  AND  BACKGROUND

From this necessity, inferring the past from a sample taken from a present population, a new approach arose:
tracing backwards in time to identify events that occurred since the most recent common ancestor of the
sample - coalescent theory.

British mathematician, sir J.F.C. Kingman, published an important paper in 1982 (attached in course webpage).

Coalescent theory is useful because
it is sample-based theory and what we study are samples, not the entire

population
of its by-products: development of of effective algorithms for simulating

population samples under various ppulation genetics models, allowing
various aspects of a model to be examined numerically

it is particularly suitable for DNA sequence samples which contain
off-loadable information about the past.

Especially interesting is detecting the role of (Darwinian) selection, at least for two reasons
Stemming from from a natural curiosity about (our) evolutionary past and

the basic mechanisms that govern molecular evolution.
The realization that inferences about selection can provide important

functional information. For example, genes that are targeted by selection
acting on segregating mutations are more likely to be associated with
disease.

In general, positions in the genome that are under selection must be of functional
importance, otherwise selection could not be operating.
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GENETIC DIVERSITY, INFINITE-ALLELES MODEL

Definition of a measure for genetic diversity, i.e. genetic variation (or variability).

In the simple model case, two alleles (A and a) segregating at a locus, the expected (HW) proportion of
heterozygotes, heterozygosity (H), is this measure: 2pq. Homozygosity = 1 – H.

The heterozygosity of a gene, i.e. a function of the number of alleles and their relative frequencies,  for
example:

A gene coding for a protein of 300 amino acids has a coding sequence 900
nucleotides. Each nucleotide site could be occupied by either A, T, G or C and thus the total
number of possible alleles is 4900.

Let´s make an assumption that every new mutation creates an allele that does not already exist in the
population. This is called the infinite-alleles model of mutation, which is – though being simple (and
unrealistic) a useful standard.

In this model two alleles that are identical in sequence are also identical by
descent.

Cf.  page 9 in slides ”Modelling mutations ….”: Each allele was assigned by a unique label: 1 ,
2 , 3 , …, 2N (interest not at their their status as A or a), each with a  frequency of 1/(2N),

random sampling from the gamete pool genotypes in generation t + 1 .  By chance, the two
alleles forming a genotype may be replicates of  the same allele in the previous generation, for
example i i or they may come from different alleles in the previous generation, for
example i j
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AUTOZYGOSITY - ALLOZYGOSITY

The alleles in the genotype i i are identical by descent because they descend from a
single ancestral allele by DNA replication in a previous generation.

The alleles in the genotype i j might also be identical by descent: subscripts i and j imply
only that did not derive by DNA replication in the immediately preceding generation, but if
they derived by DNA replication in some earlier generation, they are identical by descent.

Autozygosity: A term for alleles which are identical by descent.

Allozygosity: A term for alleles which are not identical by descent

In the infinite-alleles model, in which each mutation produces a new allele not previously present in the
population, all homozygous genotypes must have alleles that are autozygous.

To measure the homozygosity, calculating autozygosity is needed.

Let´s define Ft as the probability that that, in generation t, two alleles randomly chosen from the
population are identical by descent (autozygous).

In the following we use notations i i and i j genotypes in generation t to derive an expression for Ft
in terms of Ft-1 , N and mutation rate µ.
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INFINITE- ALLELES MODEL

Consider the genotype i i .  What is the probability that this genotype has alleles that are identical by
descent?

The alleles are identical by descent provided that neither allele has mutated in the course of
one generation, and so the probability of identity by descent in this case is  (1 - µ)2 .

The same question considering genotype i j .
These alleles are identical by descent only if two randomly chosen alleles in

generation t – 1 are identical by descent and if neither allele mutated in the course of  one
generation. The probability of identity by descent is Ft-1 (1 - µ)2 .

Because each of the labelled ´s has the same frequency in the gamete pool, namely 1/(2N), the probability
of a combination like i i is 1/(2N) and the probability of a combination like i j is  1 - 1/(2N).

Collecting the above pieces together, the recurrence equation for Ft is

Ft = [1 / (2N)](1 - µ)2 + [1 – 1/(2N)](1 - µ)2 Ft -1 (1)

At equilibrium the value of F: the increase in autozygosity from random genetic drift in any generation is
offset by the decrease in autozygosity from new mutations: Ft = Ft -1 =

= 1 / ( 1 + 4Nµ) (2)

Negligibly small terms µ2 and µ/N ignored.
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INFINITE- ALLELES MODEL

The number of alleles, resulting from mutation pressure, increases until F satisfies equation (2), which is
the equilibrium value of autozygosity, the probability of identity by descent. Because of the assumption in
the infinite-alleles models, that each allele in the population arises only once, all genotypes that are
homozygotes must also be autozygous: equation gives also the equilibrium value of the proportion of
homozygous genotypes.

Above the N (which captures/depicts the amount of genetic drift), of course, refers to effective population
size, Ne (see page 12 in slides ”Modelling mutations…”

In population genetics the usual symbol for 4 Ne µ is .
A genotype that is not homozygous is heterozygous:

the proportion of heterozygous genotypes in a population is

1 - = / (1 – ) (3)

Equation (24) gives an infinite-alleles model equlibrium which is actually and ”equilibrium”, a dynamic
state, steady state, in which allele frequencies are always changing, new m utations continue to come into
the population, alleles previously present are lost, and alleles that might at one time have been fixed are
subject to eventual loss.  The population remains at a steady state in the sense that the number of alleles
and the homozygosity (autozygosity in the infinite-alleles model) remain stationary.

If the number of alleles and the level of autozygosity are in steady state, then it is reasonable to assume
that there is also a steady-state distribution of allele frequencies.
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INFINITE ALLELES-MODEL EWENS SAMPLING FORMULA

Allele-frequency spectrum in a population
The joint distribution of allele frequencies, steady state, the most common allele has a

frequency of p1, the next most common p2 , etc.
The identity of the most common allele will change with time, i.e. the allele with fr. p1 is not

the same allele all the time.
In a steady-state population not all alleles are equally frequent, and F is greater than it

would be if all alleles were equally frequent.

Consider now the steady-state allele-frequency spectrum from the point of view of a practical
experiment: a sample is taken from a population.

Let the sample be n genes, and suppose there are k different alleles in this sample. For
example, a sample of size n=20 might consist of k=10 unique alleles, with one allele
present six times in the sample, another allele four times, two alleles twice, each, and six
alleles once, each.

Regarding the practical achievement population genetics is the paper of Warren Ewens (1972, The
sampling theory of selectively neutral alleles, Theor. Pop. Biol. 3:87-112). Ewens showed that the expected
number k of alleles in a sample of size n is a function of (derivation rather complicated)

E(k) = 1 + /( +1) + /( +2) + …+ /( +n-1) (4)

This is a kind of statistical tool for evaluating expected (neutral allele spectrum) in a real sample vs.
observed allele configuration in a certain real sample from a population. The first statistical test, Ewens-
Watterson test, was based on this.
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INFINITE-SITES MODEL

The commonly used statistical tests are based on another model, the infinite-sites model, which was
developed by Motoo Kimura (1969, 1971). The very famous test, Tajima D, was proposed by Fumio Tajima
(1989, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-
595). For introducing Tajima D,  we first  have a look at the infinite-sites model:

In a long sequence of nucleotides, if the mutation rate is sufficiently low, most sites will be monomorphic,
and all polymorphic sites will be segregating for two nucleotides. If the DNA sequence is sufficiently long and
the frequency of polymorphic sites low, then most of the time new mutations will occur at sites that were
previously monomorphic.

An example sample
of four seqs, 16 sites.

Two types of information:

Segregating sites, S
S = 8  (sites 1,2,5,6,9,10,13,14)

Nucleotide mismatches,
Among the four seqs a-d, there are 6 pairwise comparisons (a-b, a-c, a-d, b-c, b-d, c-d). Each of these
combinations compares 16 nucleotide sites, and among 6 parwise comparisons, the number of mismatches is
0, 4, 4, 4, 4, 8. The total number of pairwise mismatches is thus 24 among a total of 6 pairwise comparisons:
= 24/6 = 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a A A A A T T T T G G G G C C  C C

b A A A A T T T T G G G G C C C C

c G A A A C T T T A G G G T C C C

d A G A A T C T T G A G G C T C C
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INFINITE-SITES MODEL

The properties of the infinite-sites model is worked out with the concepts of segregating sites and
nucleotide mismatches.

Consider a sample of only two sequences. In this case, the number of segregating sites S and the average
number of nucleotide mismatches are identical, because there is only one parwise comparison. For a
sample of size 2, the probability that the number of segregating sites equals any number i is

Pr(S=i) = 1/ (1+ ) [ / (1 + )]i (5)

µ (  =Ne µ) is the mutation rate across the entire nucleotide sequence.
Formally µ can be considered as the sum of the per-nucleotide mutations rate
across all the nucleotide sites in the sequence.

A particular case of equation (5) gives the probabaility that two sequences have no mismatches (i=0, i.e.
they are identical).

Pr(S=0) = 1 / (1+ ) (6)

Note that this is the same as equation (2) autozygosity in inifinite-alleles model. So, with sample size 2, in
both models the probability that the sequences are identical is also the probability of autozygosity.
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INFINITE SITES-MODEL

From equation (5) it can be shown that that the mean and variance in the number of segregating sites, S,
are given by E(S) = and V(S) = + 2. For sample size 2, the average number of pairwise mismatches, ,
is equal to the number of segregating sites, and so E( ) = . The simplifying assumption for variance is that
nucleotide sites are completely linked (no recombination). If there is recombination, variance is reduced.
Because of this theoretical prediction, the relationship between the mean and variance, in  practical data-
analysis situations, has been used to make inference about (intragenic) recombination.

These sampling properties of  the infinite-sites model, with neutral evolution, without recombination (the
assumptions), were worked out in 1970´s by Geoff Watterson, who derived the expected number of
segregating sites in a sample of size n sequences:

n-1

E(S) = 1/i (7)
i = 1

n-1 n-1

V(S) = 1/i + 2 1/i 2 (8)
i = 1 i = 1

the average number of pairwise mismatches:

E( ) = (9)

V( ) = [(n+1)/(3(n-1))] + [2(n2+n+3)/(9n(n-1))] 2 (10)
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INFINITE SITES-MODEL TAJIMA  D  STATISTICS

The expected mean and variance equations are very important as they are are basics for practical
statistical analyses.

Corrections to eliminate the dependence on sequence length, L: the expected averages in equations (7)
and (9) are divided by L and the variances in equations (8) and (10) are divided by L2 .
These corrected values are called:

(number of segregating sites ) nucleotide polymorphism
(number of pairwise mismatches ) nucleotide diversity

Let´s define a =  1+1/2 + 1/3 + …+1/(n-1)  (the sum in equation (7)) (11)

Then,  equation (7)  yields the estimate = S/a (12)
and equation (9) provides a method for estimating based on the average number
of pairwise mismatches , and in this case the estimate is = (13)

Tajima´s proposition: The difference between the estimates of in equations (12) and (13) could be used
as a test of goodness of fit to the model. This test is extremely widely used.

The rationale is that that the number of segregating sites and the average number of pairwise
mismatches differ because:

the former is indifferent to the relative frequencies of the polymorphic nucleotides at a
given site

The two values lead to consistent estimates for anyway, unless some evolutionary
process causes a discrepancy from the assumptions of the model.
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TAJIMA  D  STATISTICS

If the model assumptions hold, or any discrepancies are too small to invalidate equations (12) and (13),
then - S/a = 0

Consider the example in page 8.
S = 8 and = 4
n = 4 so that a = 1 + ½ + 1/3 = 1.833
The estimate of from equation (12) is therefore 8/1.833 = 4.36 and from (13) 4.00.
In this example - S/a = 4.00 – 4.36 = -0.36
As the sample size is very small, any formal statistical test is not reasonable (i.e.

whether -0.36 is ”significantly different from 0”.  The very small discrepancy from 0
suggests no significant excess of rare alleles.

In practice, the ”statistical significance” by simulations: for each simulated sample
- S/a is calculated and the null disribution of the test statistics, for a given case, is

produced – assuming neutrality. If the observed value falls in the upper or lower 5% of the null
distribution, then the P-value for the test is regarded as significant (P<0.05).

Tajima´s D statistics is based on the normalized version of - S/a where the maginutude of the difference is
expressed as a multiple of the standard deviation fo the difference

D = - S/a / [ V( - S/a)]                                                                                                 (14)
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TAJIMA  D  STATISTICS

Tajima D differs from 0 when:

The frequencies of polymorphic nucleotides are too nearly equal => The average
number of pairwise differences over its neutral expectation => - S/a is positive.
This might indicate either

some type of balancing selection, or

the sample is a mixture of two different populations which differ; this might
result from a recent admixture of populations

The frequencies of the polymorphic variants are too unequal, with an excess
frequency of the most common type and too many rare types.
This pattern results in a decrease in the proportion of pairwise differences => - S/a is
negative.

One possible reason for an exess of rare alleles is

selection against genotypes carrying deleterious alleles

However, departures from the infinite-sites model do not necessarily imply
that natural selection is operating. For example, a population that is growing
will also feature an excess rare alleles and a negative value of - S/a
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GENE  GENEALOGIES  AND  THE  COALESCENCE  MODEL

Current populations with polymorphisms are products of past events and population genetic analyses
often model the branching of gene lineages to predict the time to the most recent common ancestor.  Recap
the concepts genetic drift and effective population size (see lecture slides “Modelling mutations….”)

Tracing the pattern of ancestry for allele copies in a pedigree provides a means to understand the present
patterns in those allele copies. Next page shows and example of a simple pedigree:

Equivalence of homozygosity in the present and the probability that two allele copies
descended from a single ancestor in the past.

Given the known individuals at each generation in that pedigree, we traced
ancestor–descendant relationships forward in time to predict autozygosity in the most recent
generation.

Thus, that pedigree is an example of using a prospective or time-forward model, using
knowledge of ancestors back in time and basic probability to work forward in time to
predict the autozygosity at the most recent point in time.

______________________________________________________________________________

This chapter in lecture slides is based on M Hamilton, Population genetics, 2009. Wiley-Blackwell (text here is almost a copy from this book ).
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GENE GENEALOGIES AND THE COALESCENCE MODEL

Average relatedness and autozygosity as the probability that two alleles at one locus are identical by descent.
(a) A pedigree where individual A has progeny that are half-siblings (B and C). B and C then produce progeny D

and E, which in turn produce offspring G.
(b) Only the paths of relatedness where alleles could be inherited from A, with curved arrows to indicate the

probability that gametes carry alleles identical by descent. Upper-case letters for individuals represent diploid
genotypes and
lower-case letters indicate allele copies within the gametes produced by the genotypes. The
probability that A transmits a copy of the same allele to B and C depends on the degree of  inbreeding for
individual A, or FA
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GENE  GENEALOGIES  AND  THE  COALESCENCE  MODEL

Another type of analysis of ancestor–descendant relationships is possible based on a retrospective or
time-backward model.

Imagine that we have a sample of individuals taken in the present time, analogous to
individual G in the pedigree (previous page), but there is no knowledge of their parents or
grandparents or any of their genealogical relationships.

Would it be possible to learn something about the past population genetic events that
lead up to that sample of individuals?

Yes, if we have models of ancestor–descendant relationships (genealogy) that
allow us to predict identity by descent in the past based only on knowledge of the
present. With such models, we look at patterns among the individuals available to us in the
present and try to reconstruct versions of population genetics events (e.g.drift,  selection) in
the past that could have lead to the individuals in the present.

These models are referred to collectively as coalescent theory since the perspective of the models is to
predict the probability of possible patterns of genealogical branching working back in time from the present
to the point of a single common ancestor in the past.

When two lineages trace back in time to a single ancestral lineage it is said to be a coalescent event,
hence the term coalescent theory
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COALESCENCE  THEORY

A central concept in coalescent theory is connecting a group of lineages in the present back through time
to a single ancestor in the past. This single ancestor is the first ancestor (going backward in time) of all the
lineages in a sample of lineages in the present time and is referred to as the most recent common ancestor,
MRCA.

Recall genetic drift: a time-forward model that predicted that a sample of alleles (or lineages) eventually
arrive to fixation or loss. Fixation is reached by random sampling that expands the numbers of a given
lineage or allele in the population. The lineage that reaches fixation can be traced back to a single ancestor
at some point in the past. In the process of reaching fixation, a population loses all lineages except one, the
one that was fixed by genetic drift.

This same genetic drift process can be viewed from a time-backward perspective. A sample of lineages in
the present must eventually be the product of a single ancestral lineage at some point back in the past that
happened to become more frequent under random sampling. The coalescent model turns the random
sampling process around, asking: what is the probability that two lineages in the present can be traced back
to a single lineage in the previous generation? Answering this question relies on the same probability tools
that were used earlier to describe the process of genetic drift.

A metaphor: Imagine a sealed box full of bugs. Each bug moves around the box at random.  Whenever two bugs meet by chance, one of
them (picked at random) completely eats the other one in an instant. When a bug is eaten the population of bugs decreases by one and
the remaining bugs continue to move about the box at random. The time that elapses between bug meetings tends to get longer as the
number of bugs in the box gets smaller. This is because chance meetings between bugs depend on the density of bugs in the box.
Eventually, the entire box that was full of bugs initially will wind up holding only a single bug after some time has passed. Each bug is
analogous to a lineage and one bug eating another is analogous to a coalescent event. The very last bug is analogous to the lineage that is
the most recent common ancestor.
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COALESCENCE THEORY  - ILLUSTRATION IN TERMS OF  RANDOM SAMPLING CONCEPTS

Haploid and diploid reproduction in the context of coalescent events. In a haploid population, the probability of
coalescence is 1/2N (dashed lines) whereas the probability that two lineages do not have a common ancestor in
the previous generation is 1 – 1/(2N) (solid lines). In a diploid population, the two gene or allele copies in one
individual in the present time have one ancestor in the female population (Nf) and one ancestor in the male
population (Nm). Coalescent events in the diploid population arise when the gene copies in males and females are
identical by descent. The haploid model with 2N lineages is routinely used to approximate the diploid model with
N = Nf + Nm diploid individuals.
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COALESCENCE  THEORY

So, using rules of random sampling based around the genetic drift model , a prediction can be developed
for the number of generations back in time until two lineages “find” their MRCA or coalesce to a single
lineage.

Consider a random sample of two of the 2N total lineages in the present generation.
Given that one of these two sampled lineages finds its ancestor in the previous generation, what is the
probability that the other lineage also shares that same common ancestor such that a coalescent event
occurs?

Given that one of the lineages has a given common ancestor, for coalescence to occur the other
lineage must have the same ancestor among the 2N possible ancestors in the previous generation.

Thus the probability of coalescence is 1/2N for two lineages whereas the probability that two lineages do
not have a common ancestor in the previous generation is 1  1/(2N).

In the diploid case, (each offspring composed of one allele copy inherited from a female parent and
another allele copy from a male parent) a time-backward view: reproduction where one allele copy finds its
ancestor in the male population of the last generation while the other allele copy finds its ancestor in the
female population of the last generation. For a given male or female parent, each of their two allele copies
has a probability of 1/2 of being the ancestral copy. As long as the number of males and females in a diploid
population is equal and the haploid and diploid population sizes are large, the predictions of the coalescent
model are very similar for haploid and diploid populations containing an identical total number of gene
copies. The haploid model is more straightforward and so it is used in what follows.
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COALESCENCE THEORY

Like Markov chains, the probability of coalescence displays the Markov property since it is an independent
event that depends only on the state of the population at the point of time of interest. Because of this, the
basic probabilities of coalescence and non-coalescence between two generations can be used to describe
the probability of coalescence over an arbitrary number of generations. If two randomly sampled lineages
do not coalesce for t  1 generations, then the probability that they do coalesce to their common ancestor
in generation t is

[1 – 1/(2N)]t-1 [1/(2N)]                                                                                                          (15)

Example: In a population of 2N=10 the
chance that two randomly sampled lineages
coalesce in four generations is the product
of the probability of three generations not
coalescing (1 – 1/10)3 = 0.729  and the
chance of coalescing between any two
generations (1/10), which gives a probability
of coalescence 0f 0.0729. The distribution
of probabilities of a coalescent event occurring
for two lineages in each of 30 generations
for the case of 2N=10 is show here.
The bottom figure shows the approximations of
These coalescence probabilities based on
Geometric and exponential distributions with
a probability of ”success” of ¼.
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COALESCENCE THEORY

In practice, the probabilities of coalescence are approximated using an exponential function.
To recap: The exact probability of coalescence for a pair of lineages is 1/2N and the probability
of not coalescing is 1  1/(2N) in each generation.

The exponential approximation
gives the cumulative probability of a pair of lineages coalescing at or before generation t. This probability is
symbolized as P(TC  t) where

TC is the generation of coalescence and
t is the maximum time to coalescence being considered.

Example: The probability of coalescence at or before four generations have passed in a population of 2N =
10,000.
The exact probability is the sum of the probabilities of coalescence in each generation, P(TC  4) = P(TC = 1) +
P(TC = 2) + P(TC = 3) + P(TC = 4).
Substituting in expressions for the exact probability of coalescence at each of these four time points gives
P(TC  4) = (1 – 1/10000)0 1/10000 + (1 – 1/10000)1 1/10000 + (1 – 1/10000)2 1/10000 +
(1 – 1/10000)3 1/10000 = 0.0004

Using the exponential approximation, gives 0.00039992 as the chance that a pair of lineages experiences
a coalescence at or before 4 generations elapses. Quite good agreement with exact and prob and
approximation. Approximating probabilities of coalescence with the exponential distribution makes
computing more practical and also yields several generalizations about
the coalescence process.
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COALESCENCE THEORY – WAITING TIME

As the probability of coalescence for a pair of lineages
is 1/(2N), then the average time that elapses until
coalescence is 2N when approximated by the
exponential distribution.

The average time to a coalescence is called the
waiting time.

The range of individual coalescence times
around that average is quite large. Based on the
exponential distribution, the variance in the waiting
time is 4N2 so that range of coalescence times around
the mean grows rapidly as the size of the population
increases. Thus, the length of branches connecting
lineages to their ancestors will be highly variable about
their mean value, like in the example
which shows six independent realizations of the
coalescent tree for six lineages.
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COALESCENCE THEORY - THE AVERAGE TIME TO FIND MRCA

It is possible to determine the average time for more than two lineages to find their MRCA. Suppose we
want to determine the waiting time for k lineages where k is less than or equal to the total number of
lineages sampled from a population of 2N.

Let´s consider the case of k = 3 lineages. When no coalescence events occur, one lineage finds its ancestor
among any of the 2N individuals in the previous generation. That means the next lineage must find its
ancestor among 2N 1 individuals in the previous generation and the final lineage must find its ancestor
among 2N  2 possible parents. Thus the probability
of non-coalescence is

If the number of lineages sampled is much smaller than the total number of lineages in the population
(2N) then the probability of non-coalescence for k lineages can be approximated by

where k(k-1)/2 enumerates the different ways to uniquesly sample pairs of lineages from a total of k
lineages.

The probability of a coalescence for any one of the unique pairs of the k lineage is then

(16)

(17)

(18)
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COALESCENCE THEORY  - THE AVERAGE TIME TO FIND MRCA

Now we bring these probabilities together like in equation (35) and obtain  the probability that k lineages
experience a single coalescent event t generations ago

Since this probability also follows an exponential distribution, the average time to coalescence for k
lineages in a population of 2N is

For example, if k=3 and 2N=10, the average time to coalescence is 3 1/3 generations
This is one third of the average waiting time for two lineages since each of the three unique pairs of lineages
(1–2, 1–3, and 2–3) can independently experience coalescence.

Figure next page shows the average coalescence times for six lineages based on this same logic. The
general pattern is that coalescence times decrease when more lineages are present since there are a larger
number of lineage pairs that can independently coalesce.

In figure (next page) E refers to expected and T refers to time to coalescence so that E(Tn) is the expected
or average time to coalescence for n lineages. The basic patterns seen in all coalescent trees apply to
populations of all sizes, although the absolute time for coalescent events does depend on N. Values on the
left are one realization of coalescent waiting times.
Genealogy is not drawn to scale.

(19)

(20)
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COALESCENCE THEORY  - THE AVERAGE TIME TO FIND MRCA
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COALESCENCE THEORY

When approximating the probabilities of coalescent events with the exponential distribution, it is
standard practice to put coalescence times on a continuous scale of units of 2N generations. To see how this
continuous time scale operates, let j be time measured as a real number (e.g. 1.0, 1.1, 1.2, 1.3 . . . j) in
generations.

The time to coalescent events t can then be expressed as t = j/(2N). As an example, imagine that a
coalescence event occurred at t = 1.4 on the continuous time scale. That coalescence event could also be
thought of as occurring (1.4)(2N) = 2.8N generations in the past (see the previous figure). If the population
size was 2N = 100 lineages, then that coalescent event was (1.4)(100) = 140 generations in the past.
However, if the population size was 2N = 20 lineages, then that coalescent event was (1.4)(20) = 28
generations in the past.

Population size serves to scale the time required for coalescent events to occur. Coalescent events occur
more rapidly in small populations compared to bigger populations, a conclusion
analogous to that of genetic drift effects.



Lecture 12.11.2013 / Coalescence theory and selection tests / Biometry and bioinformatics III / SVarvio 27

COALESCENCE THEORY

The height of a coalescence tree

The height of a tree for k sampled lineages is
the sum of the coalescence waiting times as
coalescent events reduce the number of
lineages from k to k-1 to k-2 down to one. The
formulae are not presented fron now on. We
turn to pick up some examples in order to
reach the practical value of this theory.

The figure illustrates the variance in the total
height of genealogies by displaying the time to
MRCA for 1000 replicate genealogies each
starting with k = 6. The
range of time to MRCA is large and the
distribution has a very long tail representing a
small proportion of genealogies that take a
very long time for all coalescence events to
occur.

Lecture 12.11.2013 / Coalescence theory and selection tests / Biometry and bioinformatics III / SVarvio 28

COALESCENCE  THEORY - POPULATION  BOTTLENECK

During the bottleneck the chance that two randomly sampled gene copies are derived from one copy
in the previous generation  (1/2N) increases. This can also be thought of as a reduction in the overall
height of a genealogical tree caused by the bottleneck since lineages that find their ancestors during the
bottleneck lead to short branches. The overall effect of a bottleneck on coalescence among gene copies
sampled in the present depends on the reduction in the effective population size and the duration. The
arrows indicate the point in time when gene copies were sampled from the population.
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COALESCENCE  THEORY - POPULATION SIZE  CHANGES
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COALESCENCE  THEORY

Figure in previous page: The two genealogies illustrate examples of waiting times that might be seen
under strong exponential population growth (left) and shrinkage (right). With strong exponential population
growth coalescent times are longest in the present when the population is the largest, leading to
genealogies characterized by long branches near the present and very short branches in the past around the
time of the MCRA. With exponential population shrinkage, coalescence times are greatest in the past near
the MRCA when the population was larger and shortest near the present when the population is at its
smallest size.

.
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COALESCENCE  THEORY  - TAJIMA  D

Effects of demography and ascertainment bias on tests of
selection.

a)The false positive rate of Tajima's D in the presence of a
population bottleneck.
A sample of 50 chromosomes was simulated using
coalescent simulations, and the time since a population
bottleneck that reduced the population size tenfold was
varied. The duration of the bottleneck was 0.1 2Ne
generations, and time in the figure is measured in 2Ne
generations, where Ne is the effective population size of a
diploid population. Each simulated data set had 20
segregating sites. The proportion of time the test rejects at
the 5% significance level in a one-sided test based on
negative values (shown in red) and positive values (shown in
blue) is shown.

b) The false-positive rate of Tajima's D in the presence of an
ascertainment bias. Simulation conditions are as described in
panel a, but the size of the ascertainment sample (expressed
as a proportion of the final sample) used for SNP discovery is
varied.

From:  Nielsen et al.  2007. Recent and ongoing selection in the human genome.
Nature Reviews Genetics 8: 857-868
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COALESCENCE  THEORY – TAJIMA  D

Differences in the shape of genealogies are the basis of Tajima’s D test. In the standard coalescent model
of genealogical branching the probability of coalescence is constant per lineage over time.

The standard coalescent therefore gives expected branch lengths when all alleles are selectively neutral
and the effective population size is constant (center). Changes in the effective population size over time
(population growth, population bottlenecks) change the probability of coalescence over time as well.
Natural selection also alters the probability of coalescence based on the fitness of alleles each lineage
bears.

Changes in the effective population size and natural selection alter the expected time to coalescence and
therefore the expected branch lengths in a genealogical tree. If the chance of coalescence is greater in the
present than in the past (right), most coalescent events occur near the present and internal branches are
long in comparison with external branches. If the chance of coalescence is smaller in the present than in the
past (left), most coalescent events occurred in the past and external branches are long in comparison with
internal branches.

Since the chance of a mutation is constant over time, lineages with longer branches are expected to
experience more mutations.
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COALESCENCE  THEORY  - MISMATCH  DISTRIBUTIONS
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COALESCENCE  THEORY – MISMATCH  DISTRIBUTIONS

Figure in previous page: The basis of the mismatch distribution by using coalescence theory

(a) A neutral genealogy that bears multiple mutation events. Each mutation event is represented by a circle
and the number of the random nucleotide site that mutated assuming the infinite sites mutation model.
The six lineages in the present can be separated into two groups (called A and B) based on their ancestral
lineage when there were only two lineages in the population.

(b) The DNA sequences for each lineage are shown based on the 30 base-pair sequence assigned to the
most recent common ancestor (MRCA) with mutations shown in lower-case letters.

(c) The number of nucleotide sites that are different or mismatched between pairs of DNA sequences.

(d) The mismatch distribution shown is a histogram of the mismatches for the 15 pairs of DNA sequences
compared. Neutral genealogies from populations with constant Ne through time tend to show bimodal
mismatch distributions. The cluster of observations with few mismatches results from
sequence comparisons between recently related lineages (comparisons within group A or group B). In
contrast, sequences from  distantly related lineages that do not share the same ancestor when
k = 2 (comparisons between groups A and B) tend to have more mismatches. .

This high level of mismatch occurs because sequences from distantly related lineages are separated by
much more time since they shared a common ancestral lineage, leading to many more mutational changes
that independently altered each DNA sequence.
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COALESCENCE  THEORY – MISMATCH DISTRIBUTIONS

Another way to think of the situation is that closely related lineages differ only by a few
young mutations while distantly related lineages differ by more mutations, many of which are old and have
been resident in the population for a long time.

The mismatch distribution has distinct patterns depending on the demographic history of the population.
Mismatch distributions from populations that have experienced a constant Ne over time tend to have two
clusters of values in the mismatch distribution.
.

Such a bimodal distribution is the characteristic signature of genealogies in populations with a relatively
constant Ne in the past. The bimodal pattern is caused by roughly equal times to coalescence of all internal
and external branches.

In contrast, populations that had rapidly growing or shrinking Ne in the past tend to have distinct
mismatch distributions. In populations that have rapidly growing Ne, most coalescence events happen early
in the genealogy near the MRCA since the probability of coalescence decreases toward the present This
leads to long external branches that each experience many unique mutations. The mismatch distribution
then has a high frequency of sequence pairs with a high degree of mismatch and few sequence pairs with a
low degree of mismatch. Alternatively, populations that experienced continual declines in Ne have
genealogies where most coalescence events happen near the present because the probability of
coalescence increases toward the present.  In a shrinking population, the mismatch distribution tends to
have a high frequency of sequence pairs with low mismatch counts
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COALESCENCE  THEORY – SELECTIVE  SWEEP

Selective sweep, the impact of natural selection on an
advantageous mutation as well as on associated nucleotide
sites.

Imagine a single population that contains five distinct DNA
sequences (without recombination).

Each DNA sequence is distinguished by a number of neutral
mutations and has a frequency given by the histogram on the
left. Initially, the population has polymorphism since the
population is composed of intermediate frequencies of each
DNA sequence.

At time 0, the third DNA sequence experiences a mutation
that is strongly advantageous, indicated by the star. Natural
selection acts to increase the frequency of the advantageous
mutation over time, until the population approaches fixation
for the third DNA sequence.

Once selection has swept the advantageous mutation to
near fixation the population has very little polymorphism.
This is because only those original neutral mutations that
were linked to the advantageous allele on the same DNA
sequence remain in the population. Thus, positive selection
on one site also sweeps away polymorphism at linked
nucleotide sites if gametic disequilibrium is maintained. The
figure assumes that positive natural selection is strong and
increases the frequency of the third DNA sequence rapidly
such that no new mutations appear in the population.
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SELECTIVE  SWEEPS

The lines indicate individual DNA sequences or haplotypes,
and derived SNP alleles are depicted as stars.

A new advantageous mutation (indicated by a red star)
appears initially on one haplotype. In the absence of
recombination, all neutral SNP alleles on the chromosome in
which the advantageous mutation first occurs will also reach a
frequency of 100% as the advantageous mutation become fixed
in the population.

Likewise, SNP-alleles that do not occur on this chromosome
will be lost, so that all variability has been eliminated in the
region in which the selective sweep occurred.

However, new haplotypes can emerge through
recombination, allowing some of the neutral mutations that are
linked to the advantageous mutation to segregate after a
completed selective sweep.

As the rate of recombination depends on the physical
distance among sites, the effect of a selective sweep on
variation in the genomic regions around it diminishes with
distance from the site that is under selection.

Chromosomal segments that are linked to advantageous
mutations through recombination during the selective sweep
are coloured yellow.

Data that are sampled during the selective sweep at a time
point when the new mutation has not yet reached a frequency
of 100% represent an incomplete selective sweep.

From:  Nielsen et al.  2007. Recent and ongoing selection in the human
genome. Nature Reviews Genetics 8: 857-868
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SELECTIVE  SWEEPS

As regards the human genome, “hunting” selective sweeps is very popular. Much interest has focused on
identifying incomplete selective sweeps, which are seen when positively selected mutations are currently
on the rise in the human populations but have not yet reached a frequency of 100%. The pattern that is left
by such mutations is distinctive, involving some locally identical haplotypes that segregate at moderate or
high frequencies, whereas the remaining haplotypes show normal levels of variability.

One of the most famous examples of an incomplete sweep is that at the lactase (LCT) locus in European
populations. Variants in this gene influence whether the ability to produce lactase, which enables the
digestion of milk, persists into adulthood. Lactase persistence is thought to have increased in frequency as a
result of positive selection during the past 10,000 years after the emergence of dairy farming.

Figure next page: The LCT region shows a characteristic signature of an incomplete selective sweep. There
is a haplotype of high frequency with strongly increased homozygosity as illustrated by the iHS (integrated
haplotype score) statistic.

There is a skew in the frequency spectrum as illustrated by the negative values of Tajima's D, and a
reduction in variability as shown by the estimate of the population genetic parameter. Characteristically of
many regions that show statistical evidence for an incomplete selective sweep, there is also a reduction in
the local recombination rate (cM Mb-1). For the top two panels, the red lines represent the Asian and the
blue lines represents the CEPH HapMap samples.

From:  Nielsen et al.  2007. Recent and ongoing selection in the human genome. Nature Reviews Genetics 8: 857-868
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LACTASE  REGION,  INCOMPLETE  SELECTIVE  SWEEP


