
REVIEWS

In many branches of genetics, as in other areas of biol-
ogy, various complex processes influence the data.
Genetics has evolved rich mathematical theories to deal
with this complexity. Using these theoretical tools, it is
often possible to construct realistic models that explain
the data in terms of the processes. Formulating such a
model is often the first step towards studying the under-
lying processes and provides the basis for STATISTICAL

INFERENCE. Most genetic properties of individuals, popula-
tions or species (such as individual genotypes, population
gene frequencies and DNA sequence polymorphisms) are
a product of forces that are inherently stochastic and
therefore cannot be studied without the use of PROBABILISTIC

MODELS. Of course, not every aspect of molecular biology
must be studied using probabilistic models. At the bio-
chemical level, for example, particular pathways of gene
expression can be studied under more or less controlled
conditions that seem (at least to many practitioners) to
obviate the need for any statistical analysis. However, even
such experimental studies are being increasingly supple-
mented by the rapidly burgeoning field of functional
genomics, a field that has many of the same properties
(and problems) as other observational sciences and that
requires similar probabilistic analysis.

Genetic data are often the result of a complex process
with many mechanisms that can produce the observed
data, so what is the best way to to choose among the
possible causes? As an example, consider the use of
genetic data to identify cryptic population structure
(that is, individuals with different population ancestries
arising from, for example, geographic separation). The
calculation of the chance that an individual carrying a

particular genotype was born in a population other
than the one from which it is sampled (that is, is an
immigrant) depends, among other things, on the gene
frequencies in that population. Inferences about the
population gene frequencies depend, in turn, on infer-
ences about the populations of origin for all other sam-
pled individuals (given their genotypes), which depend,
in turn, on the inferred gene frequencies for all other
populations, and so on. Bayesian inference is a conve-
nient way to deal with these sorts of problems (that is,
models with many interdependent parameters).

In this review, we compare the Bayesian approach to
genetic analysis with approaches that use other statisti-
cal frameworks. We endeavour to explain why the use of
Bayesian methods has increased in many branches of
science during the past decade and highlight the aspects
of many genetic problems that make Bayesian reasoning
particularly attractive1. A potentially attractive feature of
Bayesian analysis is the ability to incorporate back-
ground information into the specification of the model.
However, we argue that the recent popularity of Bayesian
methods is largely pragmatic, and can be explained by
the relative ease with which complex LIKELIHOOD prob-
lems can be tackled by the use of computationally
intensive MARKOV CHAIN Monte Carlo (MCMC) tech-
niques. To illustrate this, we describe recent applica-
tions of Bayesian inference to three areas of modern
genetic analysis: population genetics, genomics and
human genetics (primarily gene mapping). Finally,
we highlight some of the current problems and limita-
tions of Bayesian inference in genetics and outline
potential future applications.

THE BAYESIAN REVOLUTION 
IN GENETICS
Mark A. Beaumont* and Bruce Rannala‡

Bayesian statistics allow scientists to easily incorporate prior knowledge into their data analysis.
Nonetheless, the sheer amount of computational power that is required for Bayesian statistical
analyses has previously limited their use in genetics. These computational constraints have now
largely been overcome and the underlying advantages of Bayesian approaches are putting them
at the forefront of genetic data analysis in an increasing number of areas. 

STATISTICAL INFERENCE 

The process whereby data are
observed and then statements
are made about unknown
features of the system that gave
rise to the data.

PROBABILISTIC MODEL 

A model in which the data are
modelled as random variables,
the probability distribution of
which depends on parameter
values. Bayesian models are
sometimes called fully
probabilistic because the
parameter values are also 
treated as random variables.

LIKELIHOOD

The probability of the data for
a particular set of parameter
values.
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MARKOV CHAIN

A model that is suitable for
modelling a sequence of random
variables, such as nucleotide base
pairs in DNA, in which the
probability that a variable
assumes any specific value
depends only on the value of a
specified number of most recent
variables that precede it. In an
nth-order Markov chain, the
probability distribution of a
variable depends on the n
preceding observations.

MARGINAL LIKELIHOOD

Also known as the ‘prior
predictive distribution’. The
probability distribution of
the data irrespective of the
parameter values.

RANDOM VARIABLE 

A quantity that might take any 
of a range of values (discrete or
continuous) that cannot be
predicted with certainty but 
only described probabilistically.

JOINT PROBABILITY

DISTRIBUTION

The probability distribution of
all combinations of two or more
random variables.

PRIOR [DISTRIBUTION]

The probability distribution 
of parameter values before
observing the data.

CONDITIONAL DISTRIBUTION

The distribution of one or more
random variables when other
random variables of a joint
probability distribution are fixed
at particular values.

POSTERIOR DISTRIBUTION

The conditional distribution 
of the parameter given the
observed data.

POINT ESTIMATE

A summary of the location of a
parameter value. In a Bayesian
setting, this is generally the
mean, mode or median of the
posterior distribution.

INTERVAL ESTIMATE

An estimate of the region in
which the true parameter value
is believed to be located.
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Principles of Bayesian inference
The essence of the Bayesian viewpoint is that there is
no logical distinction between model parameters and
data. Both are RANDOM VARIABLES with a JOINT PROBABILITY

DISTRIBUTION that is specified by a probabilistic model.
From this viewpoint, ‘data’ are observed variables and
‘parameters’ are unobserved variables. The joint distrib-
ution is a product of the likelihood and the PRIOR. The
prior encapsulates information about the values of
a parameter before examining the data in the form of a
probability distribution. The likelihood is a CONDITIONAL

DISTRIBUTION that specifies the probability of the
observed data given any particular values for the para-
meters and is based on a model of the underlying
process. Together, these two functions combine all avail-
able information about the parameters. Bayesian statis-
tics simply involves manipulating this joint distribution
in various ways to make inferences about the parameters,
or the probability model, given the data (FIG. 1). The main
aim of Bayesian inference is to calculate the POSTERIOR

DISTRIBUTION of the parameters, which is the conditional
distribution of parameters given the data.

A POINT ESTIMATE of a parameter is obtained by consid-
ering some property of the posterior distribution (usu-
ally the mode or the mean). An INTERVAL ESTIMATE of a
parameter can be obtained by considering a ‘credible set’
of values (a set or interval that contains the true parame-
ter with probability 1–α, for which α is a pre-specified
significance level such as 0.05). An example that uses
Bayesian inference to ‘assign’ an individual from an
unknown source population to its population of birth
on the basis of its genotype is presented in BOX 1.

Other well-known non-Bayesian approaches to sta-
tistical inference include the method of maximum likeli-
hood and the METHOD OF MOMENTS, which form the basis of
classical or FREQUENTIST INFERENCE2. Maximum likelihood
bases inferences entirely on the likelihood function,
incorporating no prior information and choosing point
estimates of parameters that maximize the probability of
the data given the parameter (that is, maximizing the
likelihood as a function of the parameter for a fixed set of
data). Historically, there have been many arguments
both for and against the use of various inference frame-
works. An old criticism of the Bayesian approach is that
there is something unsatisfactorily subjective in choosing
a prior. However, this is no different in principle from the
choice of likelihood function in the maximum-likelihood
method1. In fact, as is demonstrated below, modern
Bayesian methods often place explicit prior probabilities
on alternative likelihood functions to calculate their
posterior probability given the data.

There are many practical reasons to use Bayesian
inference: if a probability model includes many interde-
pendent variables that are constrained to a particular range
of values (as is often the case in genetics), maximum-
likelihood inference requires that a constrained multi-
dimensional maximization be carried out to find the
combined set of parameter values that maximize the like-
lihood function. This is often a difficult numerical analy-
sis problem and might require enormous computational
effort. In addition, under the maximum-likelihood
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Figure 1 | The basic features that underlie Bayesian
inference. We imagine that the data D can take any value
that is measured along the x-axis of the figure. Similarly, the
parameter value Φ can take any value that is measured along
the y-axis. Bayesian inference involves creating the joint
distribution of parameters and data, P(D,Φ), illustrated by the
contour intervals in the figure. This distribution can be
obtained simply as the product of the prior P(Φ) and the
likelihood P(D|Φ). Typically, the likelihood will arise from a
statistical model in which it is necessary to consider how the
data can be ‘explained’ by the parameter(s). The prior is an
assumed distribution of the parameter that is obtained from
background knowledge. The arrows in the figure show that
marginal distributions are obtained by summing (integrating)
the joint distribution either over the data, recovering the prior
(the distribution on the right of the joint distribution), or over 
the values of the parameter, giving the MARGINAL LIKELIHOOD

(the first distribution directly below the joint distribution).
Conditional distributions (represented by the ‘|’ in notation) are
indicated by the dotted lines in the figure, and represent taking
a ‘slice’ through the joint distribution and then rescaling the
distribution so that the sum (integral) of possible values is
equal to one. The scaling factor that is needed is given by 
the marginal distribution. Any conditional distribution is simply
the joint distribution divided by a marginal distribution. For
example, the likelihood can be recovered by dividing the joint
distribution by the prior. The posterior distribution, P(Φ|D) —
the key quantity that we want in Bayesian inference — is the
joint distribution divided by the marginal likelihood. It is the
computation of the marginal likelihood (that is, the integrations
denoted by the arrows that point down from the joint
distribution) that is typically problematic.
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parameters in a genetic model and applying the
method of moments. Likelihood approaches were not
applied to population-genetic problems until later3,4.
The development of COALESCENT THEORY5,6 has strongly
influenced many areas of population genetics. Similar
to earlier approaches, the theory allows the expected
values of statistics to be calculated, but also enables
sample data sets to be simulated rapidly for PARAMETRIC

BOOTSTRAPPING, which in turn allows for more sophisti-
cated calculation of confidence intervals and hypothe-
sis testing in the frequentist tradition. Although not
applicable in all areas of population-genetic analysis,
the coalescent theory forms the basis for likelihood
calculations in genealogical models7 and has allowed
the use of Bayesian approaches to infer demographic
history from genetic data (BOX 3). In addition, Bayesian
methods have been used to assign individuals to their
population of origin and to detect selection acting on
genes.

Estimating parameters in demographic models. A fea-
ture of population-genetic inference is that parameters
in the likelihood function, such as mutation rate (µ) and
EFFECTIVE POPULATION SIZE (N

e
), occur only as their product

(µN
e
) — that is, they are NON-IDENTIFIABLE. With non-

Bayesian inference, if one parameter is of interest, a
‘best-guess’ point estimate is typically used for another8,
and there is no rigorous way to incorporate uncertainty.
An arguable9 strength of the Bayesian approach is that
prior information can be used to make inferences about
non-identifiable parameters10,11.

method, calculation of confidence intervals and statisti-
cal tests generally involve approximations that are most
accurate for large sample sizes — for example, that the
probability distribution of the maximum-likelihood
estimate follows a normal distribution. On the other
hand, in Bayesian inference — in which the prior auto-
matically imposes the parameter constraints — infer-
ences about parameter values on the basis of the posterior
distribution usually require integration (for example,
calculating means) rather than maximization, and no
further approximation is involved. Moreover, numerical
methods that were developed in the 1950s using
MCMC methods (BOX 2) and implemented on powerful
new computers have greatly facilitated the evaluation of
Bayesian posterior probabilities, making the calculations
tractable for complicated genetic models that have
resisted analysis using maximum likelihood or other
classical methods. This is arguably the most important
factor that drives the recent surge of popularity of
Bayesian inference in most branches of science. Here,
we present a range of examples in which Bayesian infer-
ence has allowed complicated models to be studied and
biologically relevant parameters to be estimated, as
well as allowing prior information to be efficiently
incorporated.

Population genetics 
Population genetics has a rich theoretical heritage
that stems from the work of Fisher, Haldane and
Wright. Initial statistical methods involved calculating
expected values of various estimators as functions of

METHOD OF MOMENTS

A method for estimating
parameters by using theory to
obtain a formula for the
expected value of statistics
measured from the data as a
function of the parameter values
to be estimated. The observed
values of these statistics are then
equated to the expected values.
The formula is inverted to
obtain an estimate of the
parameter.

FREQUENTIST INFERENCE

Statistical inference in which
probability is interpreted as the
relative frequency of occurrences
in an infinite sequence of trials.

COALESCENT THEORY

A theory that describes the
genealogy of chromosomes or
genes. Under many life-history
schemes (discrete generations,
overlapping generations,
non-random mating, and so
on), taking certain limits, the
statistical distribution of branch
lengths in genealogies follows a
simple form. Coalescent theory
describes this distribution.

PARAMETRIC BOOTSTRAPPING

The process of repeatedly
simulating new data sets with
parameters that are inferred
from the observed data, and
then re-estimating the
parameters from these simulated
data sets. This process is used to
obtain confidence intervals.

EFFECTIVE POPULATION SIZE

(N
e
). The size of a random

mating population under a
simple Fisher–Wright model
that has an equivalent rate of
inbreeding to that of the
observed population, which
might have additional
complexities such as variable
population size or biased sex
ratio.

NON-IDENTIFIABLE

[PARAMETERS]

One or more model parameters
are non-identifiable if different
combinations of the parameters
generate the same likelihood of
the data.

Box 1 | An example of Bayesian inference: assigning individuals to populations

This example should be interpreted with reference to FIG. 1. We imagine a situation in which there are haploid individuals
in a population into which immigrants arrive at a low rate. From background information, such as ringing data in birds,
we think that the probability that any randomly chosen individual is resident is 0.9 and the probability that it is an
immigrant is 0.1: this is our prior (last column on the right). In this population, there are two genotypes at a locus (A and
B). Again from background information, we think that the likelihood of genotype A is 0.01 in the immigrant pool and
0.95 in the resident pool (far left column under genotype A). The joint distribution is the product of the prior and the
likelihood (middle columns under each genotype): this represents the probability of a particular observation. For
example, the joint distribution of an immigrant with genotype A is 0.001. The probability that an observation will be of a
particular genotype, irrespective of whether it is resident or immigrant, is given by the lower margin of the table, which is
obtained by summing the joint distribution across parameter values. Given that we observe a particular genotype, the
posterior probability that it is either immigrant or resident (right-hand columns under each genotype) is given by the
joint distribution scaled so that the sum of possibilities is one, obtained by dividing the joint distribution by the
probability of the data. So, if we observe genotype B, the posterior probability that it is an immigrant is 0.69 (whereas it
was 0.1 before this observation).

Genotype A Genotype B

Parameters 
(unobserved 

variables)

Immigrant

Resident

0.001

0.01 0.0012

0.855

0.95 0.9988

0.856

Prior
probability

0.099

0.99 0.69

0.045

0.05 0.31

0.144

0.1

0.9

1Probability of data

Data (observed variables)

Likelihood
Joint 

distribution
Posterior
probability Likelihood

Joint 
distribution

Posterior
probability
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Bayesian assignment methods. The study of population
differences using genetic markers has a long history
(reviewed in Cavalli-Sforza et al.20). However, it is only
relatively recent that methods to assign individuals to
populations on the basis of MULTILOCUS GENOTYPES (assign-
ment methods) have been developed. The fundamental
equation used in assignment methods calculates the
probability of an individual’s multilocus genotype given
the allele frequencies at different loci in different popu-
lations (see BOX 1). The range of practical applications of
such assignment tests has proven to be broad. These
applications include everything from detecting cryptic
population admixture in ASSOCIATION STUDIES21–24 to
detecting population sources of sporadic outbreaks or
emerging epidemics25,26.

Recently, individual assignment methods have
been extended in several new directions. Many of
these new applications rely heavily on Bayesian
methodologies and MCMC techniques. In particular,
several new Bayesian methods have been proposed to
allow the combined inference of both the partitioning
of individuals into subpopulations and the assignment
of individual migrant ancestries27,28. Another recently
proposed method aims to  enable the joint inference of
the presence of subpopulations within a larger popula-
tion and the estimation of traditional fixation indices

Demographic models often have many parameters
and it is conceptually easier to make inferences about
them individually, or at most, jointly as pairs. Through
the use of marginal posterior distributions, Bayesian
analysis deals with this problem simply and flexibly. The
classical alternatives are to use point estimates for other
parameters or to construct confidence intervals on the
basis of profile likelihood12. However, in demographic
inference, likelihood functions can be complicated and
the approximations behind the construction of frequen-
tist confidence intervals are probably not accurate and
are technically difficult to apply with a large number of
parameters13,14. Variability among loci in parameters
such as mutation rates can be addressed through the use
of HIERARCHICAL BAYESIAN MODELS15,16 (BOX 4) — for which no
classical counterpart is readily available.

As a result of these strengths, Bayesian analysis has in
recent years become more prevalent in demographic
inference (BOX 5). Computational difficulties can be
addressed by improving the efficiency of MCMC meth-
ods16, and also through the use of alternatives to
MCMC. An example of the latter is what has come to be
known as ‘APPROXIMATE BAYESIAN COMPUTATION’ (ABC)17,
which in comparisons18 with the evaluation of the same
problem through MCMC19 can be up to 1,000 times
faster, and only slightly less accurate.

HIERARCHICAL BAYESIAN

MODEL

In a standard Bayesian model,
the parameters are drawn from
prior distributions, the
parameters of which are fixed by
the modeller. In a hierarchical
model, these parameters, usually
referred to as ‘hyperparameters’,
are also free to vary and are
themselves drawn from priors,
often referred to as ‘hyperpriors’.
This form of modelling is most
useful for data that is composed
of exchangeable groups, such as
genes, for which the possibility is
required that the parameters
that describe each group might
or might not be the same.

APPROXIMATE BAYESIAN

COMPUTATION

The data are simplified by
representation as a set of
summary statistics and
simulations used to draw
samples from the joint
distribution of parameters and
summary statistics (that is, the
distribution shown in figure 1).
The posterior distribution is
approximated by estimating the
conditional distribution of
parameters in the vicinity of the
summary statistics that are
measured from the data (the
vertical dotted line in figure 1)
avoiding the need to calculate a
likelihood function.

MULTILOCUS GENOTYPES

The combinations of alleles that
are observed when individuals
are simultaneously genotyped at
two or more genetic marker loci.

ASSOCIATION STUDY

If two or more variables have
joint outcomes that are more
frequent than would be expected
by chance (if the two variables
were independent), they are
associated. An association study
statistically examines patterns of
co-occurrence of variables, such
as genetic variants and disease
phenotypes, to identify factors
(genes) that might contribute to
disease risk.

INBREEDING COEFFICIENT

The probability of homozygosity
by descent — that is, the
probability that a zygote obtains
copies of the same ancestral gene
from both its parents because
they are related.

Box 2 | Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) describes a class of method that relies on simulating a special type of stochastic
process, known as a Markov chain, to study properties of a complicated probability distribution that cannot be easily studied
using analytical methods (reviewed in REF. 95).A Markov chain generates a series of random variables such that the
probability distribution of future states is completely determined by the current state at any point in the chain. Under certain
conditions, a Markov chain will have a ‘stationary distribution’, meaning that if the chain is iterated for a sufficient period, the
states it visits will tend to a specific probability distribution that no longer depends on the iteration number or the initial
state of the variable. The basic idea that underlies all MCMC methods is to construct a Markov chain with a stationary
distribution that is the probability distribution of interest, and then to sample from this distribution to make inferences. In
Bayesian analysis, this distribution is usually the joint posterior distribution of one or more parameters. MCMC has also
been used for estimating likelihoods and other purposes in maximum-likelihood inference. Monte Carlo refers to the
quarter in the principality of Monaco that is famous for its gambling casinos and alludes to the fact that random numbers
are generated to simulate the Markov chain: this method has much in common with generating random events (such as
rolling a dice) as is done in games of chance. The simplest form of MCMC is Monte Carlo integration.

Monte Carlo integration
The basic idea that underlies Monte Carlo (MC) integration is that properties of random variables (such as the mean) can
be studied by simulating many instances of a variable and analysing the results (reviewed in REF. 96). Each replicate of the
MC simulations is independent and the procedure is therefore equivalent to taking repeated samples from a Markov
chain that is ‘stationary’ at points that are sufficiently separated so that they are not correlated. MC integration has been
widely applied in statistical genetics (see, for example, REF. 97). The MC simulation method has the advantage that the
estimates obtained are unbiased and the standard error of the estimates can be accurately estimated because the
simulated random variables are independent and identically distributed. A disadvantage is that with complex
multidimensional variables that have a large state space (for example, a range of possible values), enormous numbers of
replicate simulations are needed to obtain accurate parameter estimates.

Metropolis–Hastings algorithm
The Metropolis–Hastings (MH) algorithm98,99 is similar to the MC simulation procedure in that it aims to sample from a
stationary Markov chain to simulate observations from a probability distribution. However, in this case, rather than
simulating independent observations from the stationary distribution, it simulates sequential values from the chain until
it converges and then samples simulated values at intervals from the chain to mimic independent samples from the
stationary distribution. The MH algorithm has the advantage that it can improve the efficiency of simulations when the
state space is large because it focuses the simulated variables on values with high probability in the stationary chain.
Disadvantages include the fact that in most practical applications, there are no rigorous methods available to determine
when the chain has converged or what the optimal intervals between samples are to extract the most information while
preserving independence between observations.
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is probable that some of these loci have been subject to
selection. A similar approach has been used to identify
candidates for adaptive selection in subdivided popula-
tions34.A method for finding the distribution of selective
effects among loci has also been described35.

Population-genetic methods for detecting selection
might be sensitive to the model that is fitted because
demographic events, such as bottlenecks, might mimic
or mask the effects of selection36. More robust inference
is possible using sequence data from different species, in
which demographic effects are irrelevant because the
segregating variants within a population are not being
considered36. Analyses at this level focus on the ratio w
of nucleotide substitutions that leave the amino acid
unchanged in the protein to substitutions that result in a
change. If all amino-acid replacing substitutions are
neutral, this ratio should be equal to one. If they are
deleterious, this ratio should be less than one, and if
favoured (positive selection), it should be more than
one. Based on these principles, a Bayesian approach has
been used to identify which codons are under positive
selection in a gene37. In this approach (an EMPIRICAL BAYES

PROCEDURE), maximum likelihood-generated point esti-
mates of phylogenetic parameters are used to calculate
the posterior probability that a codon belongs to one of
three categories (w = 0.1, or >1). Bayesian phylogenetic
methods (see REF. 38) might allow more fully Bayesian
estimates of these probabilities.

Genomics 
Sequence Analysis. The non-phylogenetic aspects of
sequence analysis have a rich and diverse history 
of model-based methods39, and include an early applica-
tion of MCMC to a biological problem40.

Markov chains or HIDDEN MARKOV MODELS (HMMs)
are at the heart of most maximum-likelihood meth-
ods of sequence analysis41. These methods use DYNAMIC

PROGRAMMING to find high-dimensional maximum-
likelihood solutions. Some likelihood-based analyses
produce scoring functions that involve a Bayesian cal-
culation. For example, the GeneMark software42, which
is used to annotate prokaryote genomes, calculates the
likelihood under several different situations (the proba-
bility of the data given that it is coding, non-coding, and
so on) and then makes an empirical Bayes calculation to
pick between them — similar to that described above
for detecting nucleotides under selection.

A rich strand of Bayesian analysis has stemmed from
models that assume that the bases at nucleotide posi-
tions, or amino-acid residues, are drawn at random
from frequency distributions that vary among regions.
The inference problem is then to locate the regions, mar-
ginal to other parameters such as base composition
within and outside regions. In this context, Bayesian
methods initially were used to model protein align-
ment40–43, an approach that has been extended to local
alignment44, and have also been used to identify tran-
scription-factor binding sites45. Bayesian modelling
based on this approach has been used to obtain the
marginal distribution of change points (boundaries of
regions) and base compositions along a sequence46 (see

(F statistics29) among and within the identified subpop-
ulations30. Finally, a Bayesian MCMC method has been
proposed for inferring short-term migration rates (over
the past few generations) using individual multilocus
genotypes31. This method also allows for deviations
from the Hardy–Weinberg equilibrium (that is, the
genotype proportions expected under random mating)
within populations by including a separate INBREEDING

COEFFICIENT for each population (the value of the inbreed-
ing coefficient is estimated as part of the MCMC infer-
ence procedure). The multidimensional complexity of
these models makes maximum-likelihood inference dif-
ficult and no comparable maximum-likelihood meth-
ods have been developed. Multilocus assignment tests
are currently in their infancy, but we expect that within
a few years they will become a routinely used tool of
biologists in fields as disparate as epidemiology, human
gene mapping and behavioural ecology.

Detecting selection. Both COMPARATIVE METHODS and pop-
ulation-genetic methods can be used to identify candi-
date loci that might have been affected by selection32. In
the case of population-genetic analysis, one idea is to
use hierarchical Bayesian demographic models (BOX 4)

in which the demographic parameters are allowed to
vary among loci to mimic the effects of selection33,15. If
the posterior probability of zero variance in demo-
graphic parameters among loci is itself close to zero, it

COMPARATIVE METHODS

Methods for comparing traits
across species to identify trends in
character evolution that indicate
the effects of natural selection.

EMPIRICAL BAYES PROCEDURE

A hierarchical model in which the
hyperparameter is not a random
variable but is estimated by some
other (often classical) means.

HIDDEN MARKOV MODEL

This is an enhancement of a
Markov chain model, in which
the state of each observation is
drawn randomly from a
distribution, the parameters of
which follow a Markov chain. For
example, the parameter might be
an indicator for whether a DNA
region is coding or non-coding,
and the observation is the base at
each nucleotide.

DYNAMIC PROGRAMMING

A large class of programmimg
algorithms that are based on
breaking a large problem down
(if possible) into incremental
steps so that, at any given stage,
optimal solutions are known
sub-problems.

Box 3 | Use of MCMC to infer parameters in genealogical models

Markov chain Monte Carlo
(MCMC) methods can 
be used to obtain posterior
distributions for
demographic parameters,
even though it is only
possible to calculate
likelihoods for individual
genealogies. It is assumed
that the parameter of
interest is twice the product
of the effective population
size (N

e
) and mutation rate.

For simplicity, the prior for
any parameter value is a
constant, and, therefore, the
posterior density for a
parameter is proportional
to the likelihood. From
coalescent theory, we can
calculate the probability of the data for a specific parameter value and specific
genealogy. The MCMC is assumed to have two types of move: changing the parameter
value, keeping to the same genealogy and changing the genealogy, keeping the same
parameter value. The moves are reversible but those towards higher likelihoods are
favoured (represented by the larger arrow heads in the figure). Relative likelihood is
indicated by the area of each individual rectangle. The same genealogy is represented by
the same colour. The relative likelihood for particular parameter values is the sum of the
relative likelihoods of the genealogies, and provided that a representative sample of
genealogies is explored, the MCMC will visit parameter values in proportion to their
relative likelihood.
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analysis), it enables full inference on each parameter
and allows more rigorous significance testing through
MODEL SELECTION. It is often straightforward to incor-
porate an HMM model into a MCMC framework48

(see also REF. 47), and so it is likely that Bayesian
analyses for sequence data will become more wide-
spread in future, built on the maximum-likelihood
framework.

also REF. 47). Maximum-likelihood approaches to a
problem such as this are generally restricted in the num-
ber of parameters considered, and significance testing is
often limited because of the high-dimensional opti-
mizations required46. By contrast, the Bayesian approach
allows more parameters to be considered (essentially
allowing parameters that are assumed to be fixed in
maximum-likelihood approaches to vary in the Bayesian

BORROW STRENGTH

This is the tendency in a
hierarchical Bayesian model for
the posterior distributions of
parameters among exchangeable
units (for example, genes) to
become narrower as a result of
pooling information across
units.

MODEL SELECTION

The process of choosing among
different models given their
posterior probability.

Box 4 | Hierarchical Bayesian models

In a standard Bayesian calculation, as in FIG. 1, the posterior distribution, P(Φ|D), is proportional to P(D|Φ)P(Φ). For
example, Φ might be a mutation rate and P(Φ) might be a prior for the mutation rate. Later, however, it might become
apparent that the mutation rate varies among loci, and that there are two causes of uncertainty: uncertainty in the ‘type’
of locus and uncertainty in the mutation rate given that type. Therefore, rather than combine these two sources of
uncertainty into P(Φ), it is possible to split it into two parts so that σ is a parameter that reflects the type of locus and
P(Φ|σ) is the uncertainty in mutation rate given that it is σ. Analagously, Φ might be variance among replicates in
expression levels in a microarray experiment. Again, the variance might itself vary among genes, specified by σ. In these
cases, Bayesian calculation could be written as P(D|Φ)P(Φ|σ)P(σ). The parameter σ is then often referred to as a
‘hyperparameter’ and P(σ) as a ‘hyperprior’.
For data from a single unit, such as a locus, this might not make much difference in the model, depending on how the
priors and hyperpriors are specified. However, if the data consist of several different loci, the types of which can be
regarded as a random sample from the distribution that is specified by σ, we can then make inferences about σ, as
indicated in the figure. The figure shows the posterior distribution of the parameter Φ inferred for three different units
(loci/genes), conditional on three different values of the hyperparameter σ that controls variability in Φ among units. As
σ becomes smaller (tends to zero; top panel), the posterior distributions of Φ for each unit become more similar, resulting
in more similar means (shrinkage; compare the range of means indicated with a black horizontal line in the three panels)
and a reduction in variance occurs (BORROWING STRENGTH; compare the variances of the middle distribution indicated with
a pink horizontal line in the three
panels). Borrowing strength refers to the
fact that as the priors for Φ become
more similar, information is used across
units. The inset shows the posterior
distribution of σ. The figure implies that
the posterior distribution of Φ for any
locus, marginal to σ, will
be intermediate between
the case σ = 0.05 and σ
= 0.5. An empirical
Bayes procedure would
use a point estimate for
σ, rather than make
inferences about Φ,
marginal to σ.
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approach: in a large data set of ESTs, this method
discarded around 99.9% of cases as false positives (that
is, those in which the variation is inferred to be the result
of sequencing error) and 60% of the remaining SNPs
were confirmed in a subsequent analysis53.

Bayesian haplotype inference through population sam-
ples. The inference of haplotypes (that is, determining
the phase of non-allelic polymorphisms) is an impor-
tant goal for many reasons (see REFS 55–65). Haplotype
phase can be determined in several ways, including link-
age analysis55 and direct molecular techniques, but most
are too unreliable, too expensive or too time-consuming
to be routinely used. Recently, population-genetic tech-
niques have been proposed for inferring haplotype phase
using population samples of genotypes56–59 based on
the principle that the distribution of (observed) multi-
locus genotypes in a random sample of individuals car-
ries information about the underlying distribution of
(unobserved) haplotypes.

Bayesian methods58,59 have been proposed as an alter-
native to the Expectation-Maximization (EM) algo-
rithm60 (a maximum-likelihood approach) for inferring
haplotypes from population-genetic data because they do
not require all the haplotype frequencies to be retained in
computer memory and eliminate the computationally
expensive maximization step of the EM algorithm. The
Bayesian approach seeks to estimate the posterior proba-
bility distributions of the population haplotype fre-
quencies, F, and/or the individual diplotypes (pairs of
haplotypes), H, given the sampled genotypes, G. This
requires that an explicit prior probability distribution for
the population haplotype frequencies, Pr(F), be specified.
Niu et al.58 use an arbitrary distribution for F, whereas
Stephens et al.59 use a distribution that is loosely based on
a population-genetic (coalescent) model. Although the
methods of Stephens et al. and Niu et al. differ in many of
the details, the basic approach is similar.

A shortcoming of current applications of haplotype-
inference algorithms is that the resulting haplotypes are
often used directly in subsequent studies (for example,

Identification of SNPs. The Human Genome Project49,50

has generated an interest in the identification of nucleo-
tide sites that are polymorphic among individuals —
that is single nucleotide polymorphisms (SNPs). There
is a large number of SNPs that potentially could be used
as markers that are efficient and inexpensive to geno-
type. The advantages of SNPs for modelling demo-
graphic history are offset by the problems of modelling
their ascertainment14,51. Typically, SNPs are identified by
intensively sequencing a small sample of individuals.
However, several factors, such as genotyping errors, can
lead to a large number of false positives. This presents an
ideal problem for Bayesian modelling in which there are
data that can be explained by competing hypotheses,
but in which we have prior information with which to
make judgements among them.

The details of how the Bayesian approach can be
applied will obviously depend on the technical details of
how the SNPs are identified. A software package that is
widely used in non-human52 as well as human genotyp-
ing is PolyBayes53 (see REF. 54 for a related approach).
Two important problems in the identification of SNPs
are the presence of PARALOGOUS sequences and sequenc-
ing errors. Bayesian calculations can deal with both
these issues sequentially53. In the first case, the num-
ber of mismatches of a sample sequence from a refer-
ence sequence is measured. Using prior information on
the average pairwise differences between paralogous
sequences versus homologous sequences, the probabil-
ity of obtaining any given number of mismatches under
either hypothesis is calculated to obtain the posterior
probability that a sequence is not paralogous to the ref-
erence sequence. Sequences in which this posterior
probability is higher than some critical value are then
selected out. The second stage involves performing
another Bayesian calculation using aligned sequences,
this time with two competing models: first, that the
observed variants are the result of sequencing error,
and second, that the observed variants are true poly-
morphisms. In this case, insertions and deletions are
ignored. Initial indications are that this is an efficient

PARALOGOUS

This refers to sequences that
have arisen by duplications
within a single genome.

Box 5 | Examples of Bayesian analysis in demographic inference

Inferring changes in population size
The first fully Bayesian genealogical analysis was applied to Y-linked microsatellite (YLM) data11. Subsequently, there 
has been interest in inferring population growth. Both approximate Bayesian computation100 and Markov chain Monte
Carlo19 approaches have been used for YLM data (these approaches yield similar results18). Methods for unlinked
microsatellite markers have also been developed33,101.

Analysis of population structure
Models of populations that diverge and evolve independently without gene flow have been considered both for DNA
sequence data16 and also for YLM data19 — the latter allowing complex bifurcating histories to be considered.A method
that enables both migration and population splitting for DNA sequence data has also been developed13. Equilibrium
models with a constant level of migration between populations seem not to have been directly addressed (but an option for
Bayesian analysis is now available in the distributed package for the maximum-likelihood estimation method in REF. 12).

Use of temporal samples
Bayesian methods have been developed to deal with genetic data that are taken at different times, allowing for
population growth102. This additional temporal information can remove the problem of non-identifiability of
parameters. It is then possible to include ancient DNA data to make more accurate inferences about population
demography. The method also has applications in viral epidemiology103. Furthermore, simpler models can be used 
to estimate effective population size in the short-term monitoring of populations104.
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among replicate experiments using a particular gene,
and minimizing the false-positive and false-negative
rates. In the first case, the idea is that with limited repli-
cation, it is difficult to be sure whether an observed dif-
ference is significant or not; therefore, we need to use
the information from other genes. This can be achieved
using a hierarchical Bayesian model, in which it is possi-
ble to borrow strength from different genes (BOX 4): a
partially Bayesian treatment along these lines has already
been proposed64. These and similar methods would
then use a sequential p-value method to minimize the
number of false positives (for example, see REF. 65).
Alternatively, a more fully Bayesian method is possi-
ble66,67, in which the affected genes are picked out
through model selection. The advantage of this approach
is that great flexibility can be introduced into deciding the
level of stringency of discrimination68.

Microarray studies are often used to group genes
that show similar patterns of expression with different
treatments. Traditionally, non-parametric ordination or
clustering techniques have been used69. The advantage
of applying Bayesian modelling instead is that it is then
possible to carry out statistical tests and obtain confi-
dence bounds on particular groupings, which are not
easily obtained using the classical approaches. One
approach, which models time-series gene-expression
data using regression in a Bayesian framework, defines
partitions in which genes have the same regression
parameters, and then hierarchically clusters expression
patterns on the basis of the posterior probability of par-
titions, starting with an initial state in which each gene
belongs to its own partition70.

Human genetics 
The rapid expansion of human genetic data during the
past few decades is unprecedented. The Human Genome
Project produced a genetic blueprint of our chromo-
somes49,50 and documented similarities and differences
between individuals; the current haplotype map project
(HapMap; see online links box) seeks to further charac-
terize the distribution of nucleotide polymorphisms
across chromosomes in human populations71. These
data present new opportunities to identify genes that are
involved in human diseases, for both simple single-gene
disorders, such as cystic fibrosis, and complex disorders
that are caused by multiple genes and the environment,
such as schizophrenia (reviewed in REF. 72; see BOX 6).
Genetic marker polymorphisms in human populations
can be used to identify genes or genomic regions that
are associated with diseases and to aid in the positional
cloning of a disease mutation. These objectives require
complex statistical modelling, and Bayesian inference
has made more rigorous statistical methods feasible in
both areas.

Association mapping. Association-mapping methods
attempt to locate disease mutations by detecting associa-
tions between the incidence of a genetic polymorphism
and that of a disease (reviewed in REF. 73). Often referred
to as ‘case–control studies’, such methods have seen
widespread application to disease studies using genetic

case–control tests for disease–haplotype associations)
without accounting for the uncertainty of the individ-
ual’s inferred haplotypes. In other words, a point
estimate of the individual haplotype is treated as an
observation in carrying out such tests and this can make
the test outcome unreliable if the posterior distribution of
haplotypes is not highly concentrated. New methods are
needed for carrying out tests of association, and so on,
that integrate over the posterior probability distribution
of haplotypes and thereby explicitly take account of
uncertain phase in carrying out the test.A likelihood ratio
test for differences in haplotype frequencies between cases
and controls has been proposed by Slatkin and Excoffier61,
but equivalent Bayesian methods have yet to be developed.

Inferring levels of gene expression and regulation. The
introduction of methods for measuring levels of gene
expression on the basis of DNA/RNA hybridization has
provoked substantial interest in the statistical problems
that arise62. Bayesian statisticians have taken on the chal-
lenge of this showcase area in droves, although many of
these studies remain in the statistical journals. Although
interesting statistical problems are raised in the actual
processing of signals from hybridization data63, the ques-
tions that have attracted most attention are: which genes
are affected by treatments (for example, tissues and
times after treatment, and so on), and what is the model
structure that best characterizes expression patterns?

Two issues are important when evaluating the effect
of treatment on expression level: making maximum use
of the information among genes to model variability

ELSTON–STEWART ALGORITHM

An iterative algorithm for
linkage mapping. The algorithm
calculates the likelihood of
marker genotypes on a pedigree.
Calculations on the basis of the
algorithm are efficient for
relatively large families, but its
application is typically limited to
a small number of markers.

LANDER–GREEN–KRUGYLAK

ALGORITHM

An iterative algorithm that is
used for linkage mapping. It
iteratively calculates the
likelihood across markers on a
chromosome, rather than across
families, as in the Elston–Stewart
algorithm. This allows efficient
calculation of pedigree
likelihoods for small families
with many linked markers.

Box 6 | Analysis of complex traits and quantitative trait locus mapping

Complex genetic traits, such as body weight or height and many human diseases (for
example, type II diabetes and schizophrenia), are determined by the combined
influences of multiple genes and the environment. Such polygenic traits are often
referred to as ‘quantitative’ because they are most often measured traits that have a more
or less continuous distribution in the population. Genes that have a major effect on a
quantitative trait are known as quantitative trait loci (QTLs). A common goal of much
research in animal and plant genetics, as well as in human-disease genetics, is to map
QTLs to regions of chromosomes in the hope that the causal loci might ultimately be
identified by positional cloning. In animal populations, QTL mapping has been carried
out for many years using controlled crosses. In humans, controlled crosses are not
possible (for obvious reasons) and existing pedigrees must instead be used to map the
loci through linkage analysis. Mapping through pedigrees has recently become popular
in agricultural and livestock genetics as well.

One serious problem that is encountered when attempting to map QTLs through
pedigree analysis is that the QTLs that influence human diseases, or other traits, often
have low penetrance (penetrance refers to the probability that an individual who carries
one or more copies of the gene has the disease/trait). Low penetrance greatly reduces the
power of linkage analysis55. The size of the pedigrees can be increased to compensate for
this reduction in power. However, maximum-likelihood methods for multipoint linkage
analysis that use the ELSTON–STEWART ALGORITHM105 or the LANDER–GREEN–KRUGYLAK

ALGORITHM106,107 are limited to either a small number of linked loci or fewer than
approximately a dozen individuals per pedigree, respectively. Recently, Markov chain
Monte Carlo methods for carrying out linkage analysis under complex models of
inheritance have been developed108,109. The methods seem promising in that they allow
much larger pedigrees to be analysed for many linked loci. Several of the most recently
developed methods are Bayesian (reviewed by REF. 110) owing to the fact that the
complex multidimensional space of the pedigree analysis problem with complex traits
has limited progress for maximum-likelihood methods.
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Bayesian approach for association-based quantitative
trait locus mapping using unlinked neutral markers as
genomic controls. More recently, Hoggart et al.81 pro-
posed a hybrid Bayesian–classical method that uses
MCMC to integrate over uncertain admixture propor-
tions and uncertain numbers of founding populations
that are involved in an admixture, with a classical gener-
alized linear model approach used to specify trait values.

Fine-mapping of disease-susceptibility genes. In the
1980s, the first genome-wide genetic markers were devel-
oped using restriction fragment length polymorphisms
(RFLPs). This allowed disease genes to be assigned to
specific chromosomal intervals using pedigree-based
linkage analysis and raised the possibility of positionally
cloning a disease gene. The size of a candidate interval
defined by linkage analysis (determined by the number
of informative meioses) is typically 1 Mb or more, how-
ever, which is much larger than could be sequenced
using 1980s technologies. One solution is to genotype
polymorphic markers that span the candidate region
among unrelated individuals. In this way,‘ancestral’ hap-
lotypes that are shared between disease chromosomes
can be detected and used to further narrow the candidate
region82,83. The basic idea is that disease mutations arise
on particular chromosomes that carry specific haplo-
types, and ancestral recombination increasingly disrupts
haplotype sharing in regions that are further from the
disease-mutation location84. Because alleles at markers
near a disease mutation are in greater linkage disequilib-
rium (LD) than those further away, this technique has
come to be known as LD MAPPING.

Early methods for LD mapping could only be used for
pairwise analyses using single-linked genetic markers —
the basic approach was to solve for the expected fraction
of non-recombinant haplotypes under a simple demo-
graphic model and then to use this result to derive an esti-
mate of the disease location assuming a Poisson recombi-
nation process on the candidate interval85. Subsequent
methods used parametric models based on coalescent
theory that were more realistic for human populations
and solved for the maximum-likelihood estimate of the
disease-mutation position (reviewed in REF. 86). As the
models were made more realistic, and attempts were
made to include factors such as multiple linked markers
and genetic heterogeneity (for example, multiple disease
alleles), it became increasingly difficult to derive tractable
maximum-likelihood estimates. Bayesian methods that
use MCMC offer a potentially powerful alternative for
such analyses. These methods allow integratation (aver-
age) over nuisance parameters such as the unknown
genealogy (coalescent tree) and ancestral haplotypes that
underlie a sample of disease (and control) chromo-
somes87,88, and over the unknown ages of disease
mutations89. These new methods also allow the direct
use of multilocus haplotypes or genotypes90,91 and
have been extended to allow the incorporation of
additional genomic information into LD mapping
through the prior for the disease location. Rannala and
Reeve87 used information from an annotated human
genome sequence (National Center for Biotechnology

markers in recent years. Association studies that rely
on linkage disequilibrium might provide a new tool
for mapping genes that influence complex diseases
(reviewed in REF. 74).

Although association methods have been shown to
be potentially more powerful than linkage analysis for
detecting genes that influence complex disease in some
circumstances, they are plagued by false-positive results
for various reasons73. One source of false-positive asso-
ciations is population stratification. If a disease muta-
tion and a particular marker allele both happen to have
an increased, or decreased, frequency in some particular
population (for example, owing to random effects such
as joint genetic drift to a higher, or lower, frequency of
susceptibility alleles and other non-causal alleles, or as a
result of confounding variables such as environmental
effects), the allele and the disease might seem to be asso-
ciated; however, the allele is really a marker of popula-
tion affiliation rather than being linked to a disease
locus and is therefore a false association.

In the early 1990s, FAMILY-BASED ASSOCIATION TESTS (FBATs),
such as the transmission disequilibrium test75, were pro-
posed to allow association studies to be carried out in
the presence of population stratification. The basic idea
was to examine trios of parents and an affected off-
spring and to use the non-transmitted alleles from par-
ents as controls and the transmitted alleles as cases. This
procedure insures that the proper control allele is used
in each comparison even in cases in which the parental
mating represents admixture between populations. The
currently available FBATs have several shortcomings.
First, they test the composite null hypothesis of either
no linkage or no association. In many cases, either link-
age or association might be of specific interest. Second,
the methods do not readily allow information from
other prior linkage or association studies to be incorpo-
rated into the test. Recently, a Bayesian FBAT has been
proposed as a potential solution76. The new method
combines the likelihood function for FBATs developed
by Sham and Curtis77 with flexible prior probability
densities for model parameters such as the recombina-
tion fraction between the disease and marker loci that
allow either uninformative (uniform) or informative
priors to be used depending on the available informa-
tion. Standard techniques for model testing, based on
the BAYES FACTOR, are then used to directly test specific
hypotheses about linkage, and so on.

An alternative way to correct for the effects of popu-
lation stratification in association analyses is to examine
unlinked genetic markers (so-called ‘genomic controls’)
to correct for population subdivision in association
studies21. Multilocus assignment tests developed in
recent years78,79 have been applied to the problem of
association mapping in admixed populations21,22. These
methods have at least two limitations: they were not
specifically developed for mapping susceptibility alle-
les that influence complex traits, and they do not ade-
quately account for the statistical uncertainty of genomic
ancestries and admixture proportions. Several Bayesian
approaches have been proposed that attempt to correct
for these deficiencies. Sillanpaa et al.80 proposed a fully

FAMILY-BASED ASSOCIATION

TESTS

A general class of genetic
association tests that uses families
with one or more affected
children as the observations
rather than unrelated cases and
controls. The analysis treats the
allele that is transmitted to (one
or more) affected children from
each parent as the ‘case’and the
untransmitted allele is treated as
the ‘control’ to avoid the influence
of population subdivision.

BAYES FACTOR

The ratio of the prior
probabilities of the null versus
the alternative hypotheses over
the ratio of the posterior
probabilities. This can be
interpreted as the relative odds
that the hypothesis is true before
and after examining the data. If
the prior odds are equal, this
simplifies to become the
likelihood ratio.

LD MAPPING

A procedure for fine-scale
localization to a region of a
chromosome of a mutation that
causes a detectable phenotype
(often a disease) by use of
linkage disequilibrium between
the phenotype that is induced by
the mutation and markers that
are located near the mutation on
the chromosome.
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the sensitivity of the model to the priors, in complicated
hierarchical models it is generally unfeasible to systemati-
cally examine the effect of different priors on the many
parameters in the model.Another issue for studies based
on MCMC is the problem of assessing CONVERGENCE,
which can be particularly acute for models with a variable
number of dimensions. Generally, most Bayesian meth-
ods are slow, which provides a strong disincentive for any-
thing more than rudimentary model-checking.

Current trends indicate that modifications to stan-
dard MCMC methods will be increasingly explored92.
For cases in which there are a large number of parame-
ters that are not of interest (such as genealogical history
in population-genetic models) and only a few that are of
interest, the ABC18,17 approach seems particularly
promising. It is also a ‘democratizing’ method in that it
will attract, for example, biologists, who enjoy computer
simulation but have little background in probability, into
converting their favourite simulation into a tool for
inference. Another burgeoning area, not covered in this
review, is the use of Bayesian networks for combining the
results from different analyses on the same data sets93,94.
It could, however, be argued that such approaches,
although useful and commercially advantageous, are
technical fixes that do not easily lend themselves to sci-
entific enquiry. By contrast, the methods described here
are based on probabilistic models of the processes that
give rise to a pattern. They have parameters that bear
some relation to quantities that could in principle be
measured and tested. At the moment, the Bayesian revo-
lution is in its earliest phase, and it will be some time yet
before the dust has settled and we can judge which are
the most promising avenues for exploration.

Information (NCBI); see online links box) and the
Human Gene Mutation Database (HGMD; see online
links box) to modify prior probabilities for the location of
a novel disease mutation taking account of the likelihood
that disease mutations reside in introns, exons or non-
coding DNA. Other innovations made possible by the
Bayesian approach include the direct use of genotype
data, rather than haplotypes90,91, by integrating over possi-
ble haplotypes in the MCMC algorithm. Allelic hetero-
geneity can also be modelled using so-called ‘shattered
coalescent’ methods that model independent disease
mutations as having separate underlying genealogies88.

Prospects and caveats 
The enormous flexibility of the Bayesian approach, illus-
trated by the examples given in this article, also points to
the need for rigorous model testing. In frequentist infer-
ence, a common practice has been to simulate large
numbers (thousands) of test data sets in which the true
parameter values are known, and then measure the bias,
mean squared error and coverage of the estimates. Such a
method sits uneasily within the Bayesian model, but is
often the simplest way to compare with frequentist
approaches18. For model-checking in Bayesian inference,
it has been suggested that parameters should be drawn
from the posterior distribution and then used to simulate
other data sets2. This is the posterior predictive distribu-
tion — the distribution of other data sets given the
observed data set. Summary statistics measured in
the real data can then be compared with those in the
simulated data to see whether the model is reason-
able. However, in practice this approach has seldom
been taken. Similarly, although it is important to check

CONVERGENCE

The inexorable tendency for a
mathematical function to
approach some particular value
(or set of values) with increasing
n. In the case of Markov chain
Monte Carlo, n is the number of
simulation replicates and the
values that the chain approaches
are the posterior probabilities.
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