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Quantitative genetics traces its roots back through more
than a century of theory, largely formed in the absence of
directly observable genotype data, and has remained
essentially unchanged for decades. By contrast, molec-
ular genetics arose from direct observations and is cur-
rently undergoing rapid changes, making the amount of
available data ever greater. Thus, the two disciplines are
disparate both in their origins and their current states,
yet they address the same fundamental question: how
does the genotype affect the phenotype? The rapidly
accumulating genomic data necessitate sophisticated
analysis, but many of the current tools are adaptations
of methods designed during the early days of quantita-
tive genetics. We argue here that the present analysis
paradigm in quantitative genetics is at its limits in
regards to unraveling complex traits and it is necessary
to re-evaluate the direction that genetic research is
taking for the field to realize its full potential.

The quantitative genetics paradigm

Nearly a century ago, Sir Ronald Fisher’s theoretical
advancements established the theory that formed the field
of quantitative genetics (Box 1). Since then, the field has
been extremely productive while conforming to this central
paradigm. However, the anomalous results that are emerg-
ing from analyses of large data sets collected using new
molecular genetics and genomics technologies cast doubts
as to whether the current quantitative genetics paradigm
is sufficient to meet the challenges of genetically dissecting
complex trait variation. The current models are stretched
to their limits and require substantial adjustments to
explain and deal with the observations. Here, we argue
that the field is now in a crisis and at a point where a new
genetics framework is needed that can encompass previous
results as well as what are, at present, anomalies (see “The
current crisis’). Genetics is a field of the future, but a
paradigm shift is needed to realize its full potential in
agriculture, medicine, and evolutionary biology.
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Overall, there is strong resistance to change in this field;
considerable efforts are spent on either showing that new
data do not present a major anomaly [1,2], even though
many of the original assumptions of Fisher no longer hold
[3-15] or focusing on data or technologies that do not
challenge the paradigm [1,2,16,17]. However, it is difficult
to ignore the fact that research utilizing genomic data, in
many ways, has outpaced developments in quantitative
genetic theory. Therefore, it is timely to look back on what
has been achieved, while asking: is the original paradigm
the foundation upon which to build the future? Will ideas
presented at a time when no molecular data were available
be appropriate for not only quantifying the contribution of
genes to complex traits, but also guiding solutions to
challenges involved in predicting the phenotypes of indi-
viduals within a population as well as understanding the
genetic architecture of traits expressed in the same indi-
vidual?

The current crisis: ample challenges for quantitative
genetics theory

In 1918, Fisher provided a new conceptual way to think
about genetic inheritance that made it possible to interpret
the findings in biometrical genetics within the Mendelian
schemes of inheritance [18] (Box 1). By establishing the
additive paradigm of quantitative genetics, a framework
was provided that facilitated the dissection of the genetic

Glossary

Additive approach: the assumption that the contribution of genes to the
phenotypic trait are independent of each other and sum up to the total genetic
contribution.

Biometrics: the application of statistical analysis to biological data.
Epigenetic effects: genome-linked effects on the phenotype not caused by the
DNA sequence.

Epistasis: when the alleles at one locus influence the effects of alleles at other
loci [42].

Genetic capacitation: the effect where one allele at a given locus (the
capacitator) amplifies the effect of alleles at other loci.

Genome-wide association study (GWAS): analysis that examines the associa-
tion between the genetic variants at a large number of genotyped loci in the
genome with the expression of a trait in the studied population
Genotype-phenotype map (GP map): a schematic representation of the mean
phenotypic value for each genotypic class.

Genotypic class: all the individuals in a population that share a common
single- or multilocus genotype, depending on context.

Infinitesimal model: a model describing the phenotypic variation in a
population as the contribution of an infinite number of genes, each making a
small additive contribution to the trait [19].

Variance heterogeneity: when the phenotypic variance differs between
genotype classes.
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Box 1. Evolution of quantitative and molecular genetics
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Pre-genetics: Mendel and biometrics

The field of genetics was founded when the first genotype-to-
phenotype mapping was presented in Mendel’s pioneering work on
peas [81]. In parallel to this, Galton developed ideas on the heritability
of phenotypic traits during the mid-1870s [82,83]. After Mendel’s work
was rediscovered [42], there was an active debate between the
biometrician and Mendelian schools of thought, including the use of
multilocus GP maps to investigate epistasis [42] (Figure |; Box 2).

The first revolution: Fisher’s synthesis

During the early 1900s, the British statistician Ronald Fisher
revolutionized the field of genetics by presenting a theory that unified
the two schools of thought [18]. His work provided a solid framework
for the study of phenotypic variation in populations that has prevailed
to this day. Fisher developed the quantitative genetics theory under a
simplistic, and mainly statistically motivated, assumption that the
genetic variance in a population was due to a large number of
Mendelian factors, each making a small additive contribution to a
particular phenotype, the so-called ‘infinitesimal model’ [19].
Although Fisher later also included additional explanatory variables

to his models, such as dominance and epistacy, these were primarily
statistically motivated nuisance parameters accounting for anoma-
lies, rather than biologically important features. During the past
century, quantitative genetics theory has matured [84] and immensely
impacted applied fields, such as animal- and plant-breeding pro-
grams.

The genomics revolution: from data poor to data rich

The statistical framework developed by Fisher was restricted by the
lack of molecular insight. It was not until the 1970s that molecular
genetics really developed in earnest and, since then, the technological
advances have been rapid. Today, it is technically and economically
feasible to trace the hereditary process at single nucleotide resolution,
something Fisher could not foresee. To some extent, this develop-
ment has induced reactions in the quantitative genetics field, such as
the development of methods for QTL mapping [20,85-87] and
genomic prediction [84,88,89] (Figure 1). However, it is necessary to
collate molecular genetics and quantitative genetics to re-evaluate
whether their historical separation into separate fields within genetics
reflects their current relevance to each other.
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Figure I. Timeline for the fields of molecular and quantitative genetics. The figure illustrates how the new synthesis by Fisher during the early 20th century provided a
unified theory for Mendelian and biometrical genetics, how several key discoveries within the fields facilitated the interdisciplinary connections leading to two of the
most groundbreaking discoveries in genetics over the past decade, genetic mapping and genomic prediction, and why we believe a new synthesis is needed to provide
a common theory that embraces the full width of these two fields. Abbreviations: QTL, quantitative trait locus; RFLP, restriction fragment length polymorphism; SNP,

single nucleotide polymorphism.

causes of phenotypic variability within populations into
the individually small genetic contributions of large num-
bers of Mendelian factors [19]. The assumption, that ge-
netic inheritance is mainly additive and that all other
genetic and environmental contributions to trait variation
are deviations from this, enabled Fisher to formulate a
powerful statistical framework that has proven immensely
useful. Geneticists have for many years been aware that
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this model is a simplification that does not accurately
reflect the true nature of biological systems. However,
because the research and commercial applications that
adhered to this theory have remained productive despite
this, no major efforts have been made to explore more
biologically connected alternatives.

Empirical observations made during the 150 years since
Mendel’s initial work (Box 1) have, step by step, shown that
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many of the basic assumptions made by Fisher when
developing his theory are often problematic, and may even
result in misleading conclusions. The infinitesimal model
was first questioned when it was shown that individual
factors make important contributions to trait variation
[20], and there are ample examples of intricate geno-
type—phenotype maps (GP maps), including multiple
alleles within a locus, epigenetic effects (see Glossary),
gene—gene interactions (epistasis), and genetic variance
control.

There are many suggestions of how to refine the current
quantitative genetics framework to address these compli-
cating factors (discussed in more detail below). It has been
argued that the route to a more complete understanding of
the genetic architecture of complex traits merely requires
improvement and fine-tuning, rather than a complete
synthesis leading to a new paradigm [16,17,21]. However,
that argument does not consider that the underlying in-
finitesimal model is a pragmatic simplification that severe-
ly restricts studies aimed at understanding genetic
mechanisms underlying observed phenomena rather than
explaining phenotypic variance in populations. Alterna-
tively, we propose that we have the data needed to move
beyond population-level genetics and try to construct a new
framework, one that is closer to the true biological system.

The missing heritability: an anomaly in genome-wide
association studies

The shortcomings of the additive genetic approach become
immediately apparent when trying to understand the ge-
netic architecture of complex traits from the outcomes of the
large number of genome-wide association studies (GWAS)
performed todate [22]. Many of these studies fail to attribute
much of the additive genetic variation, as measured by the
population-based estimates of the heritability for the stud-
ied traits, to the effects of the detected loci [3,23]. Although
increased sample sizes and improved scoring of the studied
traits are expected to increase the power to detect contrib-
uting loci, diminishing returns can be expected from adopt-
ing this approach. For example, studies of human height
using nearly 200 000 individualsidentified 180 contributing
loci, but despite having huge sample sizes and an easily
measured trait, only approximately 10% of the phenotypic,
or 1/8 of the additive genetic, variance could be explained
[24]. This study was analyzed by scanning the genome for
loci that displayed marginal differences in the phenotypic
mean between alternative genotype classes across the study
population. The contribution of each locus to the phenotypic
variance in the population was then calculated based on the
estimated additive allele-substitution effect and the total
explained genetic variance was obtained as the sum of the
individual effects. Although this analytical approach is
computationally efficient, facilitates meta-analyses, and
provides population-based statistical estimates of the con-
tributions of the inferred loci on the studied traits, it fails to
provide an in-depth exploration of the available data sets. A
potential explanation for this is that it does not consider the
nonstandard genetic contributions, such as allelic heteroge-
neity, rare alleles, parent-of-origin effects, genetic interac-
tions, or genetic variance heterogeneity, all of which can
make significant contributions to the phenotypic variance.

Trends in Genetics xxx xxxx, Vol. xxx, No. x

As a consequence, fewer deviations from the additive model
will be detected in the data (Box 2).

Thus, the genetic effects captured in GWAS are the
average, marginal contributions of individual loci or genes
to the variance in a population. As such, they do not
describe the functional, context-independent, effects of a
locus, but rather a statistical, population-dependent, re-
flection of them [25]. For example, the estimates will
change depending on the allele frequency of the studied
locus in the population as well as of the loci with which it
interacts. Therefore, these estimates will be useful mostly
for short-term predictions of changes at the population
level (i.e., over time intervals where there are only small
changes in the allele frequency), and in the particular
population under study, such as in genetic improvement
programs in plant and animal populations. However, they
will not provide the necessary insight to infer the underly-
ing, functional genetic architecture of the traits required to
predict phenotypes of individuals in other populations, as
desired in medical diagnostics, or the long-term changes in
populations studied in evolutionary biology. To obtain such
functional estimates, it is necessary to move beyond the
current paradigm and identify and quantify how the effects
of a given locus depend on its context. Below, we discuss
some types of inheritance pattern, already described in the
literature, that challenge the additive model.

Allelic heterogeneity

An emerging feature in many in-depth studies of geno-
type—phenotype relations is the evolution of several func-
tional alleles at key loci in the genome [26-30].
Contributions of multiple alleles are often overlooked in
quantitative genetics because a core assumption in stan-
dard GWAS and linkage studies is that of a single causa-
tive allele linked to one of the alleles of a bi-allelic marker
[31], rather than a series of alleles linked to a multi-allelic
marker. Given the rapid development of new techniques
for identifying polymorphisms in the genome, it is now
possible to both identify and score multiple alleles. The
challenge now is to develop an analytical and modeling
framework that utilizes, rather than marginalizes, this
additional information.

Epigenetic inheritance

Another factor adding to the complexity of the genotype—-
phenotype relation is epigenetic inheritance, which is now
known to affect some phenotypes [32]. Arguably, the best
understood mechanism is through imprinting [33,34],
which has been investigated in several cases [e.g. insulin
growth factor 2 (IGF2) and growth rate in pigs [35,36];
Callipyge locus in sheep [37], and maternal imprinted
Dnmt3L in mice [38]]. Recent studies have identified epi-
genetic factors that lead to heritable variation [39—41];
however, a disparity remains between the methods for
finding epigenetic and genetic regulation and, therefore,
a new framework for modeling the simultaneous contribu-
tions of both to the phenotypes of individuals is required.

Genetic interactions: epistasis
The term ‘epistasis’ was first coined by Bateson in his
studies of multilocus GP maps, where he found that the
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Box 2. Genotype-phenotype maps revealing genetic architecture

At the core of genetics is the GP map. Ever since Mendel’s pioneering
work with peas, geneticists have returned to these maps to under-
stand the connection between the genotype and phenotype. Figure |
is an example of how GP maps can reveal the combined effects of
multiple loci on a single phenotype.

The strength, as well as the weakness, of Fisher's quantitative
genetics models is that it focuses on reducing the complexity of single
and multilocus GP maps into a hierarchical linear model, where
additivity is the highest level effect from which all other effects are
defined as deviations. This model is efficient in capturing the variance
in many GP maps [1], but provides little insight into the genetic
architecture. Figure IA represents a model where the phenotypic
distributions for three involved loci are considered independently.
Here, the S locus displays a mean difference between the genotypes
and, consequently, has an additive effect that should be detectable
using standard quantitative genetic approaches. However, the full
contribution of the locus to the phenotypic variance cannot be
described with such methods, because it also has a genetically
determined variance heterogeneity. The phenotypic distribution for
the alternative alleles at the R locus displays a smaller mean
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difference than the S locus and almost no variance differences.
Unless the sample size is large, this locus is unlikely to be detected
based solely on its own effects (Figure IB).

The Q locus displays no mean difference between genotypes and,
therefore, will not be detectable by current popular methods.
However, several novel alternative models are designed to detect
these variance-affecting QTL (e.g. [60,90]).

When visualizing the possible two-locus GP maps, nonadditive
interactions between the loci can be observed (Figure IB). Bateson
postulated that alleles at one locus could mask the effects of alleles at
other loci [42] as observed when multiple loci are investigated
simultaneously.

However, the full genetic architecture in this example only becomes
clear when the effects of all three loci are investigated simultaneously
(Figure IC); that is, all 27 genotypic classes in this system are visualized.
The main effect of the S locus is due to capacitating epistasis [71].
Epistasis between the Rand Qloci causes the variance effect seen when
the Q locus is investigated alone. The example shows that it is
necessary to explore various analysis options to explain the full
contribution of multiple loci to an observable phenotype.
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Figure I. Example of a three-locus system affecting a trait with different genotype-phenotype (GP) representations. (A) Phenotype distributions for each locus
independently. (B) Phenotype distributions for all the possible two-locus interactions. (C) Three-locus GP map visualizing all genetic combinations and their effect on the

phenotype.
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alleles at one locus could mask the effects of alleles at other
loci [42]. Following his work, many classical types of ge-
netic interaction have been defined for qualitative traits,
including dominant epistasis, duplicate factor epistasis,
and complementary epistasis [43-48].

To date, there are many both theoretical and empirical
indications that epistasis, as defined by Bateson, may also
be an important contributor to the genetic architecture of
complex traits. Evidence for epistasis has been found in
artificial selection experiments, where the phenotypic var-
iation is often not depleted during long-term selection as
rapidly as expected [49]. It has been shown that genetic
capacitation might have an important role here to mask or
magnify the phenotypic effect of other loci as the allele
frequencies change in response to selection (Box 2) [48,50—
54]. In addition, classical genetic theory suggests that the
continuous nature of phenotypic variation is due to epista-
sis [15,55]. There is also strong evidence from molecular
studies on model organisms [48,55] and network analyses
[54,56-58] that indicate that gene—gene interactions are
commonplace.

Despite these findings, the general view in current
quantitative genetic theory is that epistasis is a nuisance
parameter in the genetic model. This means that, regard-
less of the pattern in the GP map, it only describes the
portion of the genetic variance that cannot be explained by
the marginal effects of individual loci in the hierarchical
genetic effect model. Consequently, many of the GP maps
that show an important contribution of interactions to trait
expression in individuals often display little epistatic vari-
ance [1]. In effect, the current quantitative genetics frame-
work has a built-in bias against inferring epistasis, making
it insufficient for identifying and interpreting epistatic
effects, as well as for predicting individual phenotypes
using data from genetic association or mapping studies.

Genetic variance control

When Fisher developed his genetic models, genetic factors
were perceived to act on the mean trait expression in a
population. Later, it was shown that genes could also
control trait robustness and, more recently, individual loci
displaying genetically determined variance heterogeneity
between genotypes have been identified [21,59-61]. Such
loci, known as variance quantitative trait loci or vQTL for
short, contribute to the phenotypic variance in a way that
is completely missed in standard GWAS analyses. Vari-
ance heterogeneity could emerge from direct effects
through disruptions of regulatory systems (evidence for
gene expression regulation being under genetic control was
has been reported [62]) and such individual locus effects
have been suggested as a potentially important adaptive
mechanism both empirically [63,64] and theoretically [65].
Furthermore, variance heterogeneity could also emerge as
a feature of other underlying mechanisms, such as gene-by-
environment or epistatic interactions (Box 2). Given that
the analyses to detect variance-controlling loci can easily
be applied to existing data sets collected for genome-wide
association or linkage analyses, we can expect to obtain
more empirical insights into the importance of such regu-
lation in the genetic architecture of a wide range of complex
traits in the near future.

Trends in Genetics xxx xxxx, Vol. xxx, No. x

In defence of the current paradigm

Research within a currently accepted framework usually
provides results that are both anticipated and expected,
making it, in a practical sense, highly productive. It will
naturally be defended on the basis that ‘it works’, while the
observed anomalies in data will either be ignored or argued
to be unimportant or uncommon exceptions [1,2]. As anom-
alies become increasingly common, questions are often
addressed by focusing on the ‘technical’ aspects of the
problem. Thus, the current framework is patched and
amended to address the immediate challenges, which for
GWAS studies, for example, include rare alleles, copy
number variation, and uniquely structured populations
and subpopulations [3-15,66].

If such strategies are unsuccessful in resolving the
problems, arguments are often raised for collecting more
data, which in genetics has meant increasing both the
number of samples and the number of markers typed
[4,6,7,11,66,67]. However, increasing sample sizes in ge-
netics is, as discussed above, a game of diminishing returns
[3] because it is sensitive to allele frequencies in the study
population due to the practice of detecting average geno-
type values [11,14,15]. Subdividing the population and,
hence, decreasing the sample sizes, may increase the
power to detect loci influencing the phenotype if the sub-
sets have more favorable allele frequencies. One well-
known example of bigger data sets not leading to better
results is the case of estrogen receptor-negative BRCA1-
positive individuals [14].

In summary, the additive approach has, indisputably,
proven to be a useful tool for detecting a large number of
main effect loci by associating the common phenotypes
with the common genotypes in the sample data [1,2,23].
However, despite considerable efforts to collect large sam-
ple sizes and modify the statistical models used in the
additive genetic framework, the ‘missing’ heritability prob-
lem remains. This highlights one of the core pitfalls of
continuing along the current path and we argue that
developing technical refinements of the current models
will not provide a solution. A new approach, albeit more
complex, is needed to provide a more general and accurate
match between the observed genotypic and phenotypic
data without relying on complex adjustments or simplistic
assumptions.

Towards a new synthesis in genetics

The main concern when working within an outdated para-
digm is the limitations it imposes on our thinking as well as
our ability to utilize, rather than discard, findings that are
outside its scope. For example, the nature of GWAS focuses
almost entirely on finding additive effects, which biases the
detection and interpretation of results towards genes that
actin a fashion that conforms to this assumption. However,
the available molecular evidence indicates that biological
systems are anything but additive and that we need to
evaluate alternative ways of utilizing the new data to
understand the function of the genome. Today, most
gene—gene and gene—environment interactions or loci with
multiple alleles or epigenetic inheritance are missed or, at
best, detected with reduced power. Even when such loci are
detected, the explanatory models fail to unravel the true
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mechanism underlying the observation. It is clear that the
additive approach cannot lead to a deeper understanding
of interactions between genes and, as a consequence, pre-
dictions on an individual level are limited to those possible
using the available, biologically unrealistic models, regard-
less of the number of markers and individuals used or
further refinement of these methods.

The goal of a new paradigm in quantitative genetics
should be to disentangle more accurately all the genetic
effects, including interactions within the genome and en-
vironment that have an effect on one or several phenotypes
for each individual, rather than an average for the whole
population. For this, novel ideas for analyzing genome data
outside of the current paradigm need to be developed de
novo while considering the insights provided by the recent
advances in molecular genetics. This will not only provide a
more accurate basis for basic research in genetics and
biology, but also lead to better applications in medicine
and the industry. It may also revive interest in personal-
ized medicine [68-70].

The key to developing such a new framework for future
genetics lies in an improved understanding of how GP
maps capture information from the genome that is missed
using the current paradigm (Box 2). Analysis of interaction
networks requires dissection of GP maps in various dimen-
sions and these need to be constructed, visualized, com-
pared, and understood in relation to their ability to explain
the expression of a trait in an individual. This work needs
to be unbiased with regard to how many genes are involved
and how their effects combine.

Construction of the large number of GP maps needed for
this does not require the generation of data sets with more
markers in an effort to find rare alleles, but rather carefully
planned collections of data sets that contain phenotypes
associated with as many genotype combinations from the
common and/or known allele variants as possible (Box 2).
These data can then be used to explore alternative options
for describing how different genotypic classes contribute to
the observed phenotype. It is only by designing methods for
detecting such functional effects of different combinations
of alleles that we can expand understanding of the infor-
mation provided in high-density genomic data and genome
sequences.

Several research groups have realized the need to ex-
plore genetic inheritance beyond additivity and, hence,
have developed analysis methods to use genomic data
for detection of epistasis. A practical first step is ensuring
that the analysis is unbiased and that the additive model is
not used as the null hypothesis. This needs to be done
during the experimental design phase where the popula-
tion and/or potential data are evaluated for finding epista-
sis [52,71,72]. These methods include genetic algorithms
[73,74] and machine-learning techniques [74-79]. Al-
though these are important first steps towards a complete-
ly new synthesis, they all have their limitations, such as
not being able to account for available biological informa-
tion, high computational complexity, or biases often intro-
duced prior to analysis.

Thus, finding complex interaction patterns will require
revisiting and extending classical genetics theory and de-
veloping new models that can deal with high-dimensional
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and big data sets in an efficient way. However, first, it is
necessary to change the way geneticists in general perceive
how modeling of biological data can and should be done.

Concluding remarks

We advocate that it is time to return to classical genetics
and evaluate how to integrate the basic principles of
genetic inheritance with the opportunities provided by
large-data genomics. The GWA and linkage studies are
powerful tools to dissect the genetics of complex traits, but
in their current incarnations known facts from molecular
genetics are often overlooked when designing the methods
used to analyze the collected data. This is, in part, because
the generation of molecular data has been more rapid than
development of new quantitative genetic theory. Thus,
current analysis tools utilized the old quantitative genetics
models and statistical frameworks that were available at
the time, despite the fact that the theory was developed
before the genomics revolution. Over the years, the data
sets have grown from single genes or only a few markers
into full genomes from hundreds of thousands of individu-
als. At the same time, insights into the mechanisms un-
derlying multifactorial traits have increased and indicate
that we have now reached a stage where we need to explore
inheritance beyond additive effects.

Returning to the analysis of GP maps means that they
need to be extended beyond Mendelian traits affected by a
single gene or pair of genes to also describe correctly more
complex relations. With accurate GP maps, genes interact-
ing in metabolic pathways will be easier to identify, which
will have several benefits: (i) help the field(s) of metabolo-
mics and/or interactomics; (ii) identify gene groups (and
even single regulating genes) as targets for therapy in
disease studies; and (iii) expand general understanding of
how many genes lead to a phenotype or phenotypes.

Here lies the challenge in future genetics: to derive the
models needed to construct a new framework for the field.
There is a general beliefin society that modern biology, and
genetics in particular, will lead to improved quality of life.
Lately, concerns have been raised due to the inability of
association studies to explain the genetic architectures of
complex traits [69,70,80]. To fulfill these big hopes, we
suggest implementing three principles when setting up a
project for unraveling the genetic architecture of a complex
trait: (i) proper design and/or sampling of the experimental
population; (ii) insurance of an unbiased analysis scheme;
and (iii) use and/or development of the appropriate statis-
tical methods. This will enable us to look beyond the
knowledge gained from the current approaches and rean-
alyze available data sets with new analytical approaches to
detect nonadditive genetic effects. This will not only in-
crease basic understanding of the link between DNA and
phenotype, but also provide the expected solutions to the
grand challenges of future biological science, medicine, and
agriculture.
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