Multiparameter models

- Usually, we have models with many parameters, let's start with k=2.
 - $\pi(\theta_1, \theta_2 | \mathbf{X}) = \pi(\mathbf{X} | \theta_1, \theta_2) \pi(\theta_1, \theta_2) / \text{const}$
 - $\pi(\theta_1, \theta_2)$ is joint prior. Often used: $\pi(\theta_1) \pi(\theta_2)$ independent priors for each parameter.
 - Prior could also be hierarchical: $\pi(\theta_1 | \theta_2) \pi(\theta_2)$
 - $\pi(X|\theta_1, \theta_2)$ could be e.g. $N(\mu, \sigma^2)$ -model for X.
 - Marginal posterior density usually of interest:
 π(θ₁ | X) = ∫ π(θ₁, θ₂ | X) dθ₂
 = ∫ π(θ₁ | θ₂, X) π(θ₂ | X) dθ₂

Multiparameter models

- The parameter of interest can be θ_1 while θ_2 is just a nuisance parameter.
 - Example: diagnostic testing with sensitivity θ_2 : X ~ Bin(N, $\theta_1 * \theta_2$)
 - Here, θ_1 is the unknown true prevalence, θ_2 is the unknown test sensitivity for which we could have an informative prior, though.
 - We should take into account the uncertainty of both parameters jointly, given the data (and prior).
 - $\pi(\theta_1, \theta_2 \mid X) = Bin(X \mid N, \theta_1 \theta_2) \pi(\theta_1, \theta_2) / const$

...Solving posterior becomes difficult, therefore try BUGS...

• Assume we observed N=100, X=1.

Multiparameter models

- The aim could also be to predict a multivariate response (as in correlated data models)
 - This requires several parameters in the model. $\pi(X_1, X_2 \mid \theta_1, ..., \theta_k)$
 - Posterior prediction π(X₁*,X₂*|X₁,X₂) requires integration over all parameters
 - Then some more integration to get marginal predictive distributions
 π(X₁*| X₁,X₂)= ∫π(X₁*,X₂*|X₁,X₂)dX₂*

time vs temp

Identifiability and multiparameter models

- Parameters are unidentifiable (from data) if $P(X | \theta_1) = P(X | \theta_2)$, with $\theta_1 \neq \theta_2$
- Posterior result then depends solely on prior.
- Example: $X \sim N(\theta_1 + \theta_2, 1)$
 - All combinations with $\theta_1 + \theta_2 = c$ are equally probable, unless prior can make a difference.
 - Is the posterior a proper density?
 - Multiparameter models with insufficient data may lead to problems of identifiability. Useful to examine the likelihood function.

Multinomial model

- E.g. large bag of balls of k different colors. Pick N balls (with replacement)
- X₁,...,X_k = number of balls of each color.
- $X_1 + , ..., + X_k = N$
- Vector X is multinomially distributed, given the true proportions $\theta_1, ..., \theta_k$.
- Find out $\pi(\theta_1,...,\theta_k | X)$

Conjugate prior is possible!

Multinomial model

- This is a generalization of earlier inference problem with Binomial & Beta
- $\pi(\theta_1,...,\theta_k) = \text{Dirichlet}(\alpha_1,...,\alpha_k)$
- $\Sigma \theta_i = 1$
- Thanks to conjugate prior:
 π(θ₁,...,θ_k | X) = Dirichlet(α₁+X₁,...,α_k+X_k)
- Marginal densities easy, if $\pi(\theta \mid X) = Dir(\alpha)$, then $\pi(\theta_i \mid X) = Beta(\alpha_i, \Sigma \alpha_i - \alpha_i)$

Multinomial model

- Example: there are 12 subtypes of bacteria. In a sample of 20, we observed the following numbers of each type:
- X=(0,1,4,0,8,0,3,1,3,0,0,0)
- $\pi(\theta_1,...,\theta_k | X) = Dir(\alpha_1 + X_1,...,\alpha_k + X_k) =$

 $\mathsf{Dir}(\alpha_1+0, \alpha_2+1, \alpha_3+4, \alpha_4+0, \alpha_5+8, \alpha_6+0, \alpha_7+3, \alpha_8+1, \alpha_9+3, \alpha_{10}+0, \alpha_{11}+0, \alpha_{12}+0)$

 Note the 'prior data sample' n=12 in the Dir(1,...,1) prior.

u

u

u

0.6

u

10

- Take a look at the easy cases first:
- $\pi(\mu | X, \sigma)$ and $\pi(\sigma | X, \mu)$
- Convenient notation: precision $\tau = 1/\sigma^2$ this parameterization is also used in BUGS with normal densities.
- Conjugate prior for μ is N(μ_0, σ_0) $\pi(\mu \mid \mu_0, \tau_0) = \exp(-0.5\tau_0(\mu - \mu_0)^2)/c$
- Assume first a single observation X_i: $\pi(X_i | \mu, \tau) = \exp(-0.5\tau(X_i - \mu)^2)/c$

Posterior for μ is then

$$\pi(\mu \mid X_i, \tau, \mu_0, \tau_0) = \exp(-0.5(\tau_0(\mu - \mu_0)^2 + \tau(X_i - \mu)^2))/c$$
$$= N\left(\frac{n_0\mu_0 + X_i}{n_0 + 1}, \frac{\sigma^2}{n_0 + 1}\right)$$

- Use 'completing a square' -technique.
- Here $n_0 = \tau_0 / \tau$ can be interpreted as 'prior sample size'.
- Posterior mean is: $w\mu_0 + (1-w)X_i$, with: $w = \tau_0 / (\tau_0 + \tau)$

With several measurements X₁,...,X_N, we can write the likelihood as (using sufficient statistics)

$$\pi(\overline{X} \mid \mu, \sigma) = N(\overline{X} \mid \mu, \sigma^2 / N)$$

• Similar to previous example, the posterior of μ is

$$N\left(\frac{n_0\mu_0+\overline{X}}{n_0+1},\frac{\sigma^2/N}{n_0+1}\right)$$

• Here $n_0 = \tau_0 / (N\tau)$

Normal model N(X|μ,σ)

 Posterior mean and variance can also be expressed as

• Note what happens when $N \rightarrow 0$, or $N \rightarrow \infty$?

- Another possibility: improper prior $\pi(\mu) \propto 1$
- The posterior is proper density, and $\pi(\mu | \overline{X}) = N(\overline{X}, \sigma^2 / N)$
- Compare with non-bayesian statistics, where the inference is based on

 $\pi(\overline{X} \mid \mu) = N(\mu, \sigma^2 / N)$

• These are like mirror images...

Normal model N(X|μ,σ)

- π(σ|X,μ) ?
- Assume observations X₁,...,X_N , set τ = σ ⁻²

$$\pi(X \mid \mu, \sigma) \propto \sigma^{-N} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (X_i - \mu)^2)$$

= $(\sigma^2)^{-N/2} \exp(-\frac{N}{2\sigma^2} s_0^2) = \tau^{N/2} \exp(-\frac{N\tau}{2} s_0^2)$

• Here
$$s_0^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \mu)^2$$

• Conjugate prior for τ ?gamma(α , β)

Following from Bayes theorem, the posterior π(τ|X,μ) is proportional to

$$\tau^{N/2} \exp\left(-\frac{N\tau}{2}s_0^2\right) \times \tau^{\alpha-1} \exp\left(-\beta\tau\right)$$
$$= \tau^{N/2+\alpha-1} \exp\left(-\left(\frac{N}{2}s_0^2+\beta\right)\tau\right)$$

- This is recognized to be gamma(N/2+α,Ns₀²/2+β)
- Uninformative prior $\alpha \rightarrow 0, \beta \rightarrow 0$.

- Joint density $\pi(\mu,\sigma|X)$?
- Assume observations X₁,...,X_N
- Several options:
- 1. conjugate 2D prior $\pi(\mu,\sigma)=\pi(\mu|\sigma)\pi(\sigma)$
- 2. independent priors $\pi(\mu,\sigma)=\pi(\mu)\pi(\sigma)$
- 3. improper prior $\pi(\mu, \tau) \propto 1/\tau$

more challenging to solve posterior...

Normal model N(X|μ,σ)

• Difficulties:

1. conjugate 2D prior $\pi(\mu,\sigma)=\pi(\mu|\sigma)\pi(\sigma)$ Not very practical to express prior of μ , conditionally on σ .

This would be:

 $\tau \sim \text{Gamma}(a/2,b/2)$ and $\mu \mid \tau \sim N(\mu_0, 1/\omega_0 \tau)$, known as 'normal-gamma', or 'normal inv-gamma' when parameter is σ^2 .

• Difficulties:

2. independent priors $\pi(\mu)$, $\pi(\sigma)$ Not possible to choose so that posterior could be solved in any familiar form.

Normal model N(X|μ,σ)

- Difficulties:
- 3. Improper prior $\pi(\mu, \tau) \propto 1/\tau$ same as $\pi(\mu, \sigma^2) \propto 1/\sigma^2$ same as $\pi(\mu, \log(\sigma)) \propto 1$

Posterior can be solved by factorization

$$\pi(\mu,\sigma^2 \,|\, \mathsf{X}) = \pi(\mu | \sigma^2, \mathsf{X}) \pi(\sigma^2 \,|\, \mathsf{X})$$

...we already have solved the first part before.

- The second part is $\pi(\sigma^2 | X)$
- = Scaled-Inverse-χ²(n-1,s)

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2}$$

- Or: $\pi(\tau | X) = \pi(1/\sigma^2 | X)$
- = Gamma((n-1)/2,(n-1)s²/2)
- Full joint density can thus be written as a product of two known densities.
 - Convenient for Monte Carlo simulations. (draw σ^2 , then μ conditionally on σ^2)
 - Also, can solve $\pi(\sigma^2 | \mu, X)$, useful for Gibbs sampling.

Working out $\pi(\sigma^2|X)$

• First, write $\pi(\mu,\sigma^2 | X_1,...,X_n)$ in the form:

• Then, integrate over μ to get marginal density for σ^2 .

Working out $\pi(\sigma^2|X)$

• Solving $\pi(\sigma^2|X)$: integrate the joint density $\pi(\sigma^2,\mu|X)$ over μ .

$$\pi(\sigma^{2} | X) \propto \int_{-\infty}^{\infty} \sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} [(n-1)s^{2} + n(\overline{X} - \mu)^{2}]) d\mu$$

= $\sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} (n-1)s^{2}) \times \int_{-\infty}^{\infty} \exp(-\frac{n}{2\sigma^{2}} (\overline{X} - \mu)^{2}) d\mu$
= $\sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} (n-1)s^{2}) \times \sqrt{2\pi\sigma^{2}/n}$
 $\propto (\sigma^{2})^{-(n+1)/2} \exp(-\frac{(n-1)s^{2}}{2\sigma^{2}})$

= Scaled-Inverse- $\chi^2(n-1,s)$ -distribution. For $\tau=1/\sigma^2$: this is Gamma((n-1)/2,(n-1)s²/2)

Working out $\pi(\sigma^2|X)$

- That required a few steps and manipulations...
- The lesson was to:
 - See what kind of tricks and techniques are needed for exact solutions.
 - See why and how the seemingly simple principle of Bayes theorem leads to increasingly complicated math which has been a major obstacle in practical Bayesian applications in the past.
 - See usefulness of Monte Carlo methods and WinBUGS/OpenBUGS in practical computations.