Multiparameter models

- Usually, we have models with many
parameters, let's start with $\mathrm{k}=2$.
- $\pi\left(\theta_{1}, \theta_{2} \mid X\right)=\pi\left(X \mid \theta_{1}, \theta_{2}\right) \pi\left(\theta_{1}, \theta_{2}\right) /$ const
- $\pi\left(\theta_{1}, \theta_{2}\right)$ is joint prior. Often used: $\pi\left(\theta_{1}\right) \pi\left(\theta_{2}\right)$ independent priors for each parameter.
- Prior could also be hierarchical: $\pi\left(\theta_{1} \mid \theta_{2}\right) \pi\left(\theta_{2}\right)$
- $\pi\left(X \mid \theta_{1}, \theta_{2}\right)$ could be e.g. $N\left(\mu, \sigma^{2}\right)$-model for X.
- Marginal posterior density usually of interest:

$$
\begin{aligned}
& \pi\left(\theta_{1} \mid X\right)=\int \pi\left(\theta_{1}, \theta_{2} \mid X\right) d \theta_{2} \\
& =\int \pi\left(\theta_{1} \mid \theta_{2}, X\right) \pi\left(\theta_{2} \mid X\right) d \theta_{2}
\end{aligned}
$$

Multiparameter models

- The parameter of interest can be θ_{1} while θ_{2} is just a nuisance parameter.
- Example: diagnostic testing with sensitivity θ_{2} : $\mathbf{X} \sim \operatorname{Bin}\left(N, \theta_{1} * \theta_{2}\right)$
- Here, θ_{1} is the unknown true prevalence, θ_{2} is the unknown test sensitivity - for which we could have an informative prior, though.
- We should take into account the uncertainty of both parameters jointly, given the data (and prior).
- $\pi\left(\theta_{1}, \theta_{2} \mid X\right)=\operatorname{Bin}\left(X \mid N, \theta_{1} \theta_{2}\right) \pi\left(\theta_{1}, \theta_{2}\right) /$ const

...Solving posterior becomes difficult, therefore try BUGS...

- Assume we observed N=100, $\mathrm{X}=1$.

Multiparameter models

- The aim could also be to predict a multivariate response (as in correlated data models)
- This requires several parameters in the model. $\pi\left(\mathrm{X}_{1}, \mathrm{X}_{2} \mid \theta_{1}, \ldots, \theta_{\mathrm{k}}\right)$
- Posterior prediction $\pi\left(\mathbf{X}_{1}{ }^{*}, \mathbf{X}_{2}{ }^{*} \mid \mathbf{X}_{1}, \mathbf{X}_{2}\right)$ requires integration over all parameters
- Then some more integration to get marginal predictive distributions $\pi\left(\mathrm{X}_{1}{ }^{*} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)=\int \pi\left(\mathrm{X}_{1}{ }^{*}, \mathrm{X}_{2}{ }^{*} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{dX}{ }_{2}{ }^{*}$

Identifiability and multiparameter models

- Parameters are unidentifiable (from data) if $P\left(X \mid \theta_{1}\right)=P\left(X \mid \theta_{2}\right)$, with $\theta_{1} \neq \theta_{2}$
- Posterior result then depends solely on prior.
- Example: $\mathrm{X} \sim \mathrm{N}\left(\theta_{1}+\theta_{2}, 1\right)$
- All combinations with $\theta_{1}+\theta_{2}=c$ are equally probable, unless prior can make a difference.
- Is the posterior a proper density?
- Multiparameter models with insufficient data may lead to problems of identifiability. Useful to examine the likelihood function.

Multinomial model

- E.g. large bag of balls of k different colors. Pick N balls (with replacement)
- $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}=$ number of balls of each color.
- $\mathbf{X}_{1}+, \ldots,+X_{k}=\mathbf{N}$
- Vector X is multinomially distributed, given the true proportions $\theta_{1}, \ldots, \theta_{k}$.
- Find out $\pi\left(\theta_{1}, \ldots, \theta_{k} \mid X\right)$

Conjugate prior is possible!

Multinomial model

- This is a generalization of earlier inference problem with Binomial \& Beta
- $\pi\left(\theta_{1}, \ldots, \theta_{k}\right)=\operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$
- $\Sigma \theta_{i}=1$
- Thanks to conjugate prior:

$$
\pi\left(\theta_{1}, \ldots, \theta_{k} \mid X\right)=\operatorname{Dirichlet}\left(\alpha_{1}+X_{1}, \ldots, \alpha_{k}+X_{k}\right)
$$

- Marginal densities easy, if $\pi(\theta \mid X)=\operatorname{Dir}(\alpha)$, then

$$
\pi\left(\theta_{i} \mid X\right)=\operatorname{Beta}\left(\alpha_{i}, \Sigma \alpha_{j}-\alpha_{i}\right)
$$

Multinomial model

- Example: there are 12 subtypes of bacteria. In a sample of 20 , we observed the following numbers of each type:
- $X=(0,1,4,0,8,0,3,1,3,0,0,0)$
- $\pi\left(\theta_{1}, \ldots, \theta_{k} \mid X\right)=\operatorname{Dir}\left(\alpha_{1}+X_{1}, \ldots, \alpha_{k}+X_{k}\right)=$
$\operatorname{Dir}\left(\alpha_{1}+0, \alpha_{2}+1, \alpha_{3}+4, \alpha_{4}+0, \alpha_{5}+8, \alpha_{6}+0, \alpha_{7}+3, \alpha_{8}+1, \alpha_{9}+3, \alpha_{10}+0, \alpha_{11}+0, \alpha_{12}+0\right)$
- Note the 'prior data sample' $\mathrm{n}=12$ in the $\operatorname{Dir}(1, \ldots, 1)$ prior.

Normal model $N(X \mid \mu, \sigma)$

- Take a look at the easy cases first:
- $\pi(\mu \mid X, \sigma)$ and $\pi(\sigma \mid X, \mu)$
- Convenient notation: precision $\tau=1 / \sigma^{2}$ this parameterization is also used in BUGS with normal densities.
- Conjugate prior for μ is $N\left(\mu_{0}, \sigma_{0}\right)$

$$
\pi\left(\mu \mid \mu_{0}, \tau_{0}\right)=\exp \left(-0.5 \tau_{0}\left(\mu-\mu_{0}\right)^{2}\right) / c
$$

- Assume first a single observation X_{i} :
$\pi\left(X_{i} \mid \mu, \tau\right)=\exp \left(-0.5 \tau\left(X_{i}-\mu\right)^{2}\right) / c$

Normal model $N(X \mid \mu, \sigma)$

- Posterior for μ is then

$$
\begin{aligned}
& \pi\left(\mu \mid X_{i}, \tau, \mu_{0}, \tau_{0}\right)=\exp \left(-0.5\left(\tau_{0}\left(\mu-\mu_{0}\right)^{2}+\tau\left(X_{i}-\mu\right)^{2}\right)\right) / c \\
& =N\left(\frac{n_{0} \mu_{0}+X_{i}}{n_{0}+1}, \frac{\sigma^{2}}{n_{0}+1}\right)
\end{aligned}
$$

- Use 'completing a square' -technique.
- Here $\mathrm{n}_{0}=\tau_{0} / \tau$ can be interpreted as 'prior sample size'.
- Posterior mean is: $w \mu_{0}+(1-w) X_{i}$, with: $\mathbf{w}=\tau_{0} /\left(\tau_{0}+\tau\right)$

Normal model $N(X \mid \mu, \sigma)$

- With several measurements X_{1}, \ldots, X_{N}, we can write the likelihood as
(using sufficient statistics)

$$
\pi(\bar{X} \mid \mu, \sigma)=N\left(\bar{X} \mid \mu, \sigma^{2} / N\right)
$$

- Similar to previous example, the posterior of μ is

$$
N\left(\frac{n_{0} \mu_{0}+\bar{X}}{n_{0}+1}, \frac{\sigma^{2} / N}{n_{0}+1}\right)
$$

- Here $\mathrm{n}_{0}=\tau_{0} /(\mathrm{N} \tau)$

Normal model $N(X \mid \mu, \sigma)$

- Posterior mean and variance can also be expressed as

$$
E(\mu \mid \bar{X})=\frac{\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{N \bar{X}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}} \quad V(\mu \mid \bar{X})=\frac{1}{\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}}
$$

Note what happens when $N \rightarrow 0$, or $N \rightarrow \infty$?

Normal model $N(X \mid \mu, \sigma)$

- Another possibility: improper prior $\pi(\mu) \propto 1$
- The posterior is proper density, and $\pi(\mu \mid \bar{X})=N\left(\bar{X}, \sigma^{2} / N\right)$
- Compare with non-bayesian statistics, where the inference is based on

$$
\pi(\bar{X} \mid \mu)=N\left(\mu, \sigma^{2} / N\right)
$$

- These are like mirror images...

Normal model $N(X \mid \mu, \sigma)$

- $\pi(\sigma \mid \mathrm{X}, \mu)$?
- Assume observations X_{1}, \ldots, X_{N}, set $\tau=\sigma^{-2}$
$\pi(X \mid \mu, \sigma) \propto \sigma^{-N} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}\right)$
$=\left(\sigma^{2}\right)^{-N / 2} \exp \left(-\frac{N}{2 \sigma^{2}} s_{0}^{2}\right)=\tau^{N / 2} \exp \left(-\frac{N \tau}{2} s_{0}^{2}\right)$
- Here $s_{0}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}$
- Conjugate prior for τ ?gamma(α, β)

Normal model $N(X \mid \mu, \sigma)$

- Following from Bayes theorem, the posterior $\pi(\tau \mid X, \mu)$ is proportional to
$\tau^{N / 2} \exp \left(-\frac{N \tau}{2} s_{0}^{2}\right) \times \tau^{\alpha-1} \exp (-\beta \tau)$
$=\tau^{N / 2+\alpha-1} \exp \left(-\left(\frac{N}{2} s_{0}^{2}+\beta\right) \tau\right)$
- This is recognized to be gamma($\mathrm{N} / 2+\alpha, \mathrm{Ns}_{0}{ }^{2} / 2+\beta$)
- Uninformative prior $\alpha \rightarrow 0, \beta \rightarrow 0$.

Normal model $N(X \mid \mu, \sigma)$

- Joint density $\pi(\mu, \sigma \mid X)$?
- Assume observations X_{1}, \ldots, X_{N}
- Several options:

1. conjugate 2D prior $\pi(\mu, \sigma)=\pi(\mu \mid \sigma) \pi(\sigma)$
2. independent priors $\pi(\mu, \sigma)=\pi(\mu) \pi(\sigma)$
3. improper prior $\pi(\mu, \tau) \propto 1 / \tau$
more challenging to solve posterior...

Normal model $N(X \mid \mu, \sigma)$

- Difficulties:

1. conjugate 2D prior $\pi(\mu, \sigma)=\pi(\mu \mid \sigma) \pi(\sigma)$

Not very practical to express prior of μ, conditionally on σ.
This would be:
$\tau \sim$ Gamma(a/2,b/2) and
$\mu \mid \tau \sim N\left(\mu_{0}, 1 / \omega_{0} \tau\right)$, known as
'normal-gamma', or 'normal inv-gamma' when parameter is σ^{2}.

Normal model $N(X \mid \mu, \sigma)$

- Difficulties:

2. independent priors $\pi(\mu), \pi(\sigma)$

Not possible to choose so that posterior could be solved in any familiar form.

Normal model $N(X \mid \mu, \sigma)$

- Difficulties:

3. Improper prior $\pi(\mu, \tau) \propto 1 / \tau$
same as $\pi\left(\mu, \sigma^{2}\right) \propto 1 / \sigma^{2}$
same as $\pi(\mu, \log (\sigma)) \propto 1$
Posterior can be solved by factorization

$$
\pi\left(\mu, \sigma^{2} \mid X\right)=\pi\left(\mu \mid \sigma^{2}, X\right) \pi\left(\sigma^{2} \mid X\right)
$$

...we already have solved the first part before.

Normal model $N(X \mid \mu, \sigma)$

- The second part is $\pi\left(\sigma^{2} \mid X\right)$
$=$ Scaled-Inverse- $\chi^{2}(\mathrm{n}-1, \mathrm{~s})$

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

- Or: $\pi(\tau \mid X)=\pi\left(1 / \sigma^{2} \mid X\right)$
= Gamma((n-1)/2,(n-1)s²/2)
- Full joint density can thus be written as a product of two known densities.
- Convenient for Monte Carlo simulations. (draw σ^{2}, then μ conditionally on σ^{2})
- Also, can solve $\pi\left(\sigma^{2} \mid \mu, X\right)$, useful for Gibbs sampling.

Working out $\pi\left(\sigma^{2} \mid \mathrm{X}\right)$

- First, write $\pi\left(\mu, \sigma^{2} \mid X_{1}, \ldots, X_{n}\right)$ in the form:

- Then, integrate over μ to get marginal density for σ^{2}.

Working out $\pi\left(\sigma^{2} \mid \mathrm{X}\right)$

- Solving $\pi\left(\sigma^{2} \mid X\right)$: integrate the joint density $\pi\left(\sigma^{2}, \mu \mid X\right)$ over μ.

$$
\begin{aligned}
& \pi\left(\sigma^{2} \mid X\right) \propto \int_{-\infty}^{\infty} \sigma^{-n-2} \exp \left(-\frac{1}{2 \sigma^{2}}\left[(n-1) s^{2}+n(\bar{X}-\mu)^{2}\right]\right) d \mu \\
& =\sigma^{-n-2} \exp \left(-\frac{1}{2 \sigma^{2}}(n-1) s^{2}\right) \times \int_{-\infty}^{\infty} \exp \left(-\frac{n}{2 \sigma^{2}}(\bar{X}-\mu)^{2}\right) d \mu \\
& =\sigma^{-n-2} \exp \left(-\frac{1}{2 \sigma^{2}}(n-1) s^{2}\right) \times \sqrt{2 \pi \sigma^{2} / n} \\
& \propto\left(\sigma^{2}\right)^{-(n+1) / 2} \exp \left(-\frac{(n-1) s^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

$=$ Scaled-Inverse- $\chi^{2}(\mathrm{n}-1, \mathrm{~s})$-distribution.
For $\tau=1 / \sigma^{2}$: this is Gamma((n-1)/2,(n-1)s $\left.s^{2} / 2\right)$

Working out $\pi\left(\sigma^{2} \mid \mathrm{X}\right)$

- That required a few steps and manipulations...
- The lesson was to:
- See what kind of tricks and techniques are needed for exact solutions.
- See why and how the seemingly simple principle of Bayes theorem leads to increasingly complicated math which has been a major obstacle in practical Bayesian applications in the past.
- See usefulness of Monte Carlo methods and WinBUGS/OpenBUGS in practical computations.

