
BUGS modeling 
• The basic idea is always the same: 

• Firstly: define the (full) likelihood. This is the 
conditional probability model for all observed 
data 
• For example: all results from coin tossing 

modelled as Bernoulli-variables  
       for(i in 1:n){ Bi ~ dbern(theta) } 
• If sufficient statistics exists, then you can 

summarize all data with that, for example:              
X ~  dbin(theta,n) 

• Written with sufficient statistics or with individual 
data points, the likelihood function for the 
unknown parameter theta is the same. Only this 
matters! 
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BUGS modeling 
• The basic idea is always the same: 

• Secondly: define the (full) prior for all parameters (if 
there are many) 
• For example: theta ~ dbeta(1,1) 
• or for each parameter independently:  
        for(i in 1:k){ theta[i] ~ dbeta(…) }  
• or jointly as a multivariate distribution, e.g.                       

theta[1:k] ~ ddirich(a[1:k]) 
• or hierarchically, e.g. 
• theta[1] ~ dunif(0,1);  theta[2] <- dunif(0,theta[1])  
• Even in case of prior independence, parameters can still be 

dependent in the resulting posterior. 
• The same prior can be constructed in different ways too. For 

example these are equivalent for theta:  
 theta ~ dbeta(1,1) 
 theta ~ dunif(0,1) 
 theta <- phi(a);   a ~ dnorm(0,1)  
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BUGS modeling 
• The basic idea is always the same: 

• Thirdly: it helps to figure out the model as a 
DAG first 
• This helps to keep track of what is in the model, and that 

each part is defined: 
• All observed data values ”X” have a conditional 

probability model, which depends on parameters 
”theta”. In a DAG this is drawn as ”theta  X” for 
each X. 

• All parameters have assigned priors, or further 
distributions, which depend on further parameters. 

• No cycles in model definition! It should constitute 
Acyclic Graph! 
 

• Keep in mind that you are constructing the logical 
definition of the elements needed in Bayes theorem: 
the prior and the likelihood. 
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BUGS modeling 

• Collect several definitions by using indexing and 
looping: 
• For example: separate models for each X: 

 for(i in 1:K){     X[i] ~ dbin( theta[i] , N[i])     }  

• For example: models with common parameter for 
each X: 

 for(i in 1:K){     X[i] ~ dbin( theta , N[i])     }  

• Every definition within  ”for(i in 1:K){  }” should have 
index i on the left-hand-side of ”~” or ””.    

• Can make several nested loops, for ”x[i,j]” etc.   

• Can use nested indexing, for ”x[y[i]]”. 

• Can use arithmetics in indexing, for ”x[i+10]”   
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BUGS modeling 

• Separate parameters example DAG: 

 

 

 

 

• Common parameter example DAG:  
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BUGS language 

• What distributions and logical functions are 
available? 

• Check the list from manual/menu.  

• Pay attention to parameterization!  

• A very useful function: step(). This can be used 
to create indicator variables, to compute 
probabilities by computing mean of the 
indicator.  

• What you define should be logically correct and 
computable in all situations. 1/X should never 
become 1/0 if X is stochastic.   
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BUGS language 
• Data formatting  (every data variable should 

appear in the model code) 
 list(x=4,   

         y=c(3.5,7.2,9.1), 
         z=structure( 
 .Data=c(7,3,5,1,8,2), 
 .Dim=c(2,3)) ) 
 
Alternative format 
 
z[,1]  z[,2] z[,3] 
7 3 5 
1 8 2 
END                           (Note: empty line after END) 
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BUGS language 

• Irregular data can be coded using NA for 
”missing” 

 list( z=structure( 

 .Data=c(7,NA,NA, 

      9,6,3, 

                             2,NA,5),  

 .Dim=c(3,3))) 

BUGS would generate predictions for NAs. 

Alternatively, use auxiliary indexing: 

list(z=c(7,9,6,3,2,5),person=c(1,2,2,2,3,3)) 
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BUGS language 

• Transformations of original data values can be 
declared within model code 

 yy <- log(y) 

 yy ~ dnorm(mu,tau) 

 

Here y would be given in data listing. 

• Can check your data values from ’info’  ’node  
info’  ’values’  (if you doubt what values were 
loaded).  
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Tips 

• Always think it as a DAG.   hierarchical model 
structures.    

• Fixed data value has to be assigned to a stochastic ”~” 
node in the model code, not ”<-”. The latter would 
make ’multiple deterministic definitions’ error.  

• Ddistr( ? , ? )  Parameters, not expressions. Check 
parameterization ! 

• Test first with a small number of iterations to see how 
slowly it runs. 

• Give constants in data, not within code. 

• Separate clearly what’s data, what’s model. 

• Use comments # there are never too many! 
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Tips 

• Collect definitions logically into groups (priors, 
likelihoods, predictions), easier to read.  

• Transformations of data can be defined within code. 

• Use indexing, and nested indexing. 

• Avoid multiple definitions (e.g. within for-loops!) they 
are syntax errors. 

• Break long expressions into short ones (avoid ’logical 
expression too complex’ error) 

• Pay attention to naming of parameters, variables. They 
should be meaningful at first sight. (or write good 
explanations in comment lines) 
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Tips 

• Constants cannot be monitored, but can check them 
from the node-info menu button. 

• Sooner or later, it will be more convenient to run BUGS 
from R, try it later... 

• For the inbuilt convergence diagnostics, you should pick 
overdispersed starting values for at least 3 chains. 

• Think of identifiability: are there sufficient data? Is  
something hanging completely from prior? It is 
deceptively easy to build castles in the clouds….  

• Make use of inprod to avoid writing long expressions 
a[1]*X[1]+a[2]*X[2]+… … .  And make use of other 
useful functions available (see manual functions). 
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Tips 

• Finally: don’t get confused of  what is (fixed) data, and 
what is unknown parameter. It is always about 
computing posterior distribution of the unknowns, 
conditionally on the known data: 

 

P( unknowns | known data) 

 

   This posterior distribution is what you get from BUGS. 
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