BUGS modeling

 The basicidea is always the same:

* Firstly: define the (full) likelihood. This is the
conditional probability model for all observed
data

For example: all results from coin tossing
modelled as Bernoulli-variables

for(iin 1:n){ B, ~ dbern(theta) }

If sufficient statistics exists, then you can
summarize all data with that, for example:

X ~ dbin(theta,n)

Written with sufficient statistics or with individual
data points, the likelihood function for the
unknown parameter theta is the same. Only this
matters!



BUGS modeling

 The basic idea is always the same:

Secondly: define the (full) prior for all parameters (if
there are many)
. For example: theta ~ dbeta(1,1)
e or for each parameter independently:
for(i in 1:k){ theta[i] ~ dbeta(...) }

. or jointly as a multivariate distribution, e.g.
theta[1:k] ~ ddirich(a[1:k])

. or hierarchically, e.g.
. theta[1] ~ dunif(0,1); theta[2] <- dunif(0,theta[1])

. Even in case of prior independence, parameters can still be
dependent in the resulting posterior.

e  The same prior can be constructed in different ways too. For
example these are equivalent for theta:

theta ~ dbeta(1,1)
theta ~ dunif(0,1)
theta <- phi(a); a~ dnorm(0,1)



BUGS modeling

 The basicidea is always the same:

* Thirdly: it helps to figure out the model as a
DAG first

* This helps to keep track of what is in the model, and that
each part is defined:

All observed data values ”"X” have a conditional
probability model, which depends on parameters
“theta”. In a DAG this is drawn as "theta = X” for
each X.

All parameters have assigned priors, or further
distributions, which depend on further parameters.

No cycles in model definition! It should constitute
Acyclic Graph!

Keep in mind that you are constructing the logical
definition of the elements needed in Bayes theorem:
the prior and the likelihood.



BUGS modeling

Collect several definitions by using indexing and
looping:

For example: separate models for each X:
for(iin 1:K){ X[i] ~ dbin( theta[i], N[i]) }

For example: models with common parameter for
each X:

for(iin 1:K){ X[i] ~ dbin( theta, NJ[i]) }

Every definition within “for(i in 1:K){ }” should have
index i on the left-hand-side of ”~” or " &<”.

Can make several nested loops, for “x[i,j]” etc.
Can use nested indexing, for "x[y]i]]”.
Can use arithmetics in indexing, for "x[i+10]”



BUGS modeling

 Separate parameters example DAG:

e Common parameter example DAG:



BUGS language

 What distributions and logical functions are
available?

 Check the list from manual/menu.
 Pay attention to parameterization!

* Avery useful function: step(). This can be used
to create indicator variables, to compute
probabilities by computing mean of the
indicator.

 What you define should be logically correct and
computable in all situations. 1/X should never
become 1/0 if X is stochastic.



BUGS language

Data formatting (every data variable should
appear in the model code)
list(x=4,
y=c(3.5,7.2,9.1),
z=structure(
.Data=c(7,3,5,1,8,2),
.Dim=c(2,3)) )

Alternative format

z[,1]  z[,2]  z[,3]
7 35
1 8 2

END (Note: empty line after END)



BUGS language

* Irregular data can be coded using NA for
“missing”
list( z=structure(
.Data=c(7,NA,NA,
9,6,3,
2,NA,5),
.Dim=c(3,3)))
BUGS would generate predictions for NAs.
Alternatively, use auxiliary indexing:
list(z=c(7,9,6,3,2,5),person=c(1,2,2,2,3,3))



BUGS language

 Transformations of original data values can be
declared within model code
yy <- log(y)
yy ~ dnorm(mu,tau)

Here y would be given in data listing.

* Can check your data values from ‘info” 2 'node

info’ = ‘values’ (if you doubt what values were
loaded).



Tips

Always think it as a DAG. -2 hierarchical model
structures.

TP/

Fixed data value has to be assigned to a stochastic
node in the model code, not ”<-”. The latter would
make ‘multiple deterministic definitions’ error.

Ddistr( ?, ? ) € Parameters, not expressions. Check
parameterization !

Test first with a small number of iterations to see how
slowly it runs.

Give constants in data, not within code.
Separate clearly what’s data, what’s model.
Use comments # there are never too many!



Tips
Collect definitions logically into groups (priors,
likelihoods, predictions), easier to read.
Transformations of data can be defined within code.

Use indexing, and nested indexing.

Avoid multiple definitions (e.g. within for-loops!) they
are syntax errors.

Break long expressions into short ones (avoid ’logical
expression too complex’ error)

Pay attention to naming of parameters, variables. They
should be meaningful at first sight. (or write good
explanations in comment lines)



Tips

Constants cannot be monitored, but can check them
from the node-info menu button.

Sooner or later, it will be more convenient to run BUGS
from R, try it later...

For the inbuilt convergence diagnostics, you should pick
overdispersed starting values for at least 3 chains.

Think of identifiability: are there sufficient data? Is
something hanging completely from prior? It is
deceptively easy to build castles in the clouds....

Make use of inprod to avoid writing long expressions
a[1]1*X[1]+a[2]*X[2]+... ... . And make use of other
useful functions available (see manual—> functions).



Tips

Finally: don’t get confused of what is (fixed) data, and

what is unknown parameter. It is always about
computing posterior distribution of the unknowns,

conditionally on the known data:

P( unknowns | known data)

This posterior distribution is what you get from BUGS.
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