
BUGS modeling
• The basic idea is always the same:

• Firstly: define the (full) likelihood. This is the
conditional probability model for all observed
data
• For example: all results from coin tossing

modelled as Bernoulli-variables
 for(i in 1:n){ Bi ~ dbern(theta) }
• If sufficient statistics exists, then you can

summarize all data with that, for example:
X ~ dbin(theta,n)

• Written with sufficient statistics or with individual
data points, the likelihood function for the
unknown parameter theta is the same. Only this
matters!

1

BUGS modeling
• The basic idea is always the same:

• Secondly: define the (full) prior for all parameters (if
there are many)
• For example: theta ~ dbeta(1,1)
• or for each parameter independently:
 for(i in 1:k){ theta[i] ~ dbeta(…) }
• or jointly as a multivariate distribution, e.g.

theta[1:k] ~ ddirich(a[1:k])
• or hierarchically, e.g.
• theta[1] ~ dunif(0,1); theta[2] <- dunif(0,theta[1])
• Even in case of prior independence, parameters can still be

dependent in the resulting posterior.
• The same prior can be constructed in different ways too. For

example these are equivalent for theta:
 theta ~ dbeta(1,1)
 theta ~ dunif(0,1)
 theta <- phi(a); a ~ dnorm(0,1)

2

BUGS modeling
• The basic idea is always the same:

• Thirdly: it helps to figure out the model as a
DAG first
• This helps to keep track of what is in the model, and that

each part is defined:
• All observed data values ”X” have a conditional

probability model, which depends on parameters
”theta”. In a DAG this is drawn as ”theta  X” for
each X.

• All parameters have assigned priors, or further
distributions, which depend on further parameters.

• No cycles in model definition! It should constitute
Acyclic Graph!

• Keep in mind that you are constructing the logical
definition of the elements needed in Bayes theorem:
the prior and the likelihood.

3

BUGS modeling

• Collect several definitions by using indexing and
looping:
• For example: separate models for each X:

 for(i in 1:K){ X[i] ~ dbin(theta[i] , N[i]) }

• For example: models with common parameter for
each X:

 for(i in 1:K){ X[i] ~ dbin(theta , N[i]) }

• Every definition within ”for(i in 1:K){ }” should have
index i on the left-hand-side of ”~” or ””.

• Can make several nested loops, for ”x[i,j]” etc.

• Can use nested indexing, for ”x[y[i]]”.

• Can use arithmetics in indexing, for ”x[i+10]”

4

BUGS modeling

• Separate parameters example DAG:

• Common parameter example DAG:

5

q1
q2 qk

x1
x2 xk

x1
x2 xk

q

BUGS language

• What distributions and logical functions are
available?

• Check the list from manual/menu.

• Pay attention to parameterization!

• A very useful function: step(). This can be used
to create indicator variables, to compute
probabilities by computing mean of the
indicator.

• What you define should be logically correct and
computable in all situations. 1/X should never
become 1/0 if X is stochastic.

6

BUGS language
• Data formatting (every data variable should

appear in the model code)
 list(x=4,

 y=c(3.5,7.2,9.1),
 z=structure(
 .Data=c(7,3,5,1,8,2),
 .Dim=c(2,3)))

Alternative format

z[,1] z[,2] z[,3]
7 3 5
1 8 2
END (Note: empty line after END)

7

BUGS language

• Irregular data can be coded using NA for
”missing”

 list(z=structure(

 .Data=c(7,NA,NA,

 9,6,3,

 2,NA,5),

 .Dim=c(3,3)))

BUGS would generate predictions for NAs.

Alternatively, use auxiliary indexing:

list(z=c(7,9,6,3,2,5),person=c(1,2,2,2,3,3))

8

BUGS language

• Transformations of original data values can be
declared within model code

 yy <- log(y)

 yy ~ dnorm(mu,tau)

Here y would be given in data listing.

• Can check your data values from ’info’  ’node
info’  ’values’ (if you doubt what values were
loaded).

9

Tips

• Always think it as a DAG.  hierarchical model
structures.

• Fixed data value has to be assigned to a stochastic ”~”
node in the model code, not ”<-”. The latter would
make ’multiple deterministic definitions’ error.

• Ddistr(? , ?)  Parameters, not expressions. Check
parameterization !

• Test first with a small number of iterations to see how
slowly it runs.

• Give constants in data, not within code.

• Separate clearly what’s data, what’s model.

• Use comments # there are never too many!

10

Tips

• Collect definitions logically into groups (priors,
likelihoods, predictions), easier to read.

• Transformations of data can be defined within code.

• Use indexing, and nested indexing.

• Avoid multiple definitions (e.g. within for-loops!) they
are syntax errors.

• Break long expressions into short ones (avoid ’logical
expression too complex’ error)

• Pay attention to naming of parameters, variables. They
should be meaningful at first sight. (or write good
explanations in comment lines)

11

Tips

• Constants cannot be monitored, but can check them
from the node-info menu button.

• Sooner or later, it will be more convenient to run BUGS
from R, try it later...

• For the inbuilt convergence diagnostics, you should pick
overdispersed starting values for at least 3 chains.

• Think of identifiability: are there sufficient data? Is
something hanging completely from prior? It is
deceptively easy to build castles in the clouds….

• Make use of inprod to avoid writing long expressions
a[1]*X[1]+a[2]*X[2]+… … . And make use of other
useful functions available (see manual functions).

12

Tips

• Finally: don’t get confused of what is (fixed) data, and
what is unknown parameter. It is always about
computing posterior distribution of the unknowns,
conditionally on the known data:

P(unknowns | known data)

 This posterior distribution is what you get from BUGS.

13

